Purpose: Among the virtual teeth generated by Deep Convolutional Generative Adversarial Networks (DCGAN), the optimal data was analyzed for the number of learning. Methods: We extracted 50 mandibular first molar occlusal surfaces and trained 4,000 epoch with DCGAN. The learning screen was saved every 50 times and evaluated on a Likert 5-point scale according to five classification criteria. Results were analyzed by one-way ANOVA and tukey HSD post hoc analysis (α = 0.05). Results: It was the highest with 83.90±6.32 in the number of group3 (2,050-3,000) learning and statistically significant in the group1 (50-1,000) and the group2 (1,050-2,000). Conclusion: Since there is a difference in the optimal virtual tooth generation according to the number of learning, it is necessary to analyze the learning frequency section in various ways.
Journal of the Korea Institute of Information and Communication Engineering
/
v.4
no.4
/
pp.845-852
/
2000
In the 21s1 century, it may be possible to offer comprehensive service by integrating all communication media under the development of digital technology without the classification of broadcasting and communication. In addition, it will be begun to perform HDTV broadcasting by focusing on the Metropolitan area in 2001yr and will permit over 100 channels for satellite communication, thus multi-channel TV broadcasting age has come in Korea. Therefore, this study is to identify the future environment of TV broadcasting and service area in ISDB age and to present new interactive type publication satellite TV transmission system, which provides customizing type digital screen book publication, by analyzing satellite broadcasting technology to create Korean cultural area around the Korean peninsula.
Conducting sentiment analysis and opinion mining are challenging tasks in natural language processing. Many of the sentiment analysis and opinion mining applications focus on product reviews, social media reviews, forums and microblogs whose reviews are topic-similar and opinion-rich. In this paper, we try to analyze the sentiments of sentences from online webcast reviews that scroll across the screen, which we call live barrages. Contrary to social media comments or product reviews, the topics in live barrages are more fragmented, and there are plenty of invalid comments that we must remove in the preprocessing phase. To extract evaluative sentiment sentences, we proposed a novel approach that clusters the barrages from the same commenter to solve the problem of scattering the information for each barrage. The method developed in this paper contains two subtasks: in the data preprocessing phase, we cluster the sentences from the same commenter and remove unavailable sentences; and we use a semi-supervised machine learning approach, the naïve Bayes algorithm, to analyze the sentiment of the barrage. According to our experimental results, this method shows that it performs well in analyzing the sentiment of online webcast barrages.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.8
/
pp.4076-4092
/
2019
Nowadays, most users access internet through mobile applications. The common way to authenticate users through websites forms is using passwords; while they are efficient procedures, they are subject to guessed or forgotten and many other problems. Additional multi modal authentication procedures are needed to improve the security. Behavioral authentication is a way to authenticate people based on their typing behavior. It is used as a second factor authentication technique beside the passwords that will strength the authentication effectively. Keystroke dynamic rhythm is one of these behavioral authentication methods. Keystroke dynamics relies on a combination of features that are extracted and processed from typing behavior of users on the touched screen and smart mobile users. This Research presents a novel analysis in the keystroke dynamic authentication field using two features categories: timing and no timing combined features. The proposed model achieved lower error rate of false acceptance rate with 0.1%, false rejection rate with 0.8%, and equal error rate with 0.45%. A comparison in the performance measures is also given for multiple datasets collected in purpose to this research.
Yun, Young-Sun;Park, Jisu;Jung, Jinman;Eun, Seongbae;Cha, Shin;So, Sun Sup
Journal of Korea Multimedia Society
/
v.21
no.11
/
pp.1305-1316
/
2018
Graphical user interface(GUI) has a very important role to interact with software users. However, designing and coding of GUI are tedious and pain taking processes. In many studies, the researchers are trying to convert GUI elements or widgets to code or describe formally their structures by help of domain knowledge of stochastic methods. In this paper, we propose the GUI elements detection approach based on object detection strategy using deep neural networks(DNN). Object detection with DNN is the approach that integrates localization and classification techniques. From the experimental result, if we selected the appropriate object detection model, the results can be used for automatic code generation from the sketch or capture images. The successful GUI elements detection can describe the objects as hierarchical structures of elements and transform their information to appropriate code by object description translator that will be studied at future.
Here we report a simple screening system using hematoxylin staining (HS) of the root apex. It allowed rapid classification into different aluminum (Al) tolerance from 65 cultivars within one week. Using this system, we selected the most Al-tolerant (Jayae-2) and-sensitive (Pum-2) barley (Hordeum vulgare L.) The results show that the different responses in Al-induced growth inhibition, Al accumulation and expression of plasma membrane (PM) $H^+$-ATPase in root apices of selected two cultivars. It showed strongly Al-induced growth inhibition in a dosedependant manner only in Pum-2 but not in Jayae-2. Aluminum accumulation in root apices (10 mm) was significantly higher in Pum-2 only. The $H^+$-ATPase expression of PM vesicles by western blotting was decreased in Pum-2 but not in Jayae-2 treated with $20{\mu}M$ Al for 24 h. These finding indicate to screen from our system is rapid and reliable and to sustain the expression of PM $H^+$-ATPase at translational level is an important role in root growth as affected by Al.
The perception of a fashion product may vary depending on the texture and color of its material. Additionally, the product may appear differently in person versus on a digital screen. Therefore, in the present study, we sought to investigate the differences in visual sensibility evaluation between materials in person and on digital screens. In this study, three pairs of visual sensibility adjectives were tested for 60 samples selected as fashion materials. Fashion materials were divided into colors, embossings, and visual clarity categories. Results showed that each color had the same sense during in-person and digital evaluation. In terms of visual sensibility according to embossing, both in-person and digital evaluations of materials with embossings were found to have the same visual sense, whereas those without embossings looked different between in-person and digital evaluations. Assessments based on visual classification showed that both in-person and digital evaluations had the same sensibility. This study is meaningful in suggesting that when evaluating the visual sense of fashion material, the sensation for the digital screen versus in person may be different in some cases.
Objectives: The purpose of this study is to predict the weight loss by applying machine learning using real-world clinical data from overweight and obese adults on weight loss program in 4 Korean Medicine obesity clinics. Methods: From January, 2017 to May, 2019, we collected data from overweight and obese adults (BMI≥23 kg/m2) who registered for a 3-month Gamitaeeumjowi-tang prescription program. Predictive analysis was conducted at the time of three prescriptions, and the expected reduced rate and reduced weight at the next order of prescription were predicted as binary classification (classification benchmark: highest quartile, median, lowest quartile). For the median, further analysis was conducted after using the variable selection method. The data set for each analysis was 25,988 in the first, 6,304 in the second, and 833 in the third. 5-fold cross validation was used to prevent overfitting. Results: Prediction accuracy was increased from 1st to 2nd and 3rd analysis. After selecting the variables based on the median, artificial neural network showed the highest accuracy in 1st (54.69%), 2nd (73.52%), and 3rd (81.88%) prediction analysis based on reduced rate. The prediction performance was additionally confirmed through AUC, Random Forest showed the highest in 1st (0.640), 2nd (0.816), and 3rd (0.939) prediction analysis based on reduced weight. Conclusions: The prediction of weight loss by applying machine learning showed that the accuracy was improved by using the initial weight loss information. There is a possibility that it can be used to screen patients who need intensive intervention when expected weight loss is low.
The aim of this paper was to prove that if the risk level in combined tasks was improved through evaluation of postural load of liquid weight measurement process, the workload level and ratio of exposure time would be changed, and the time of process would be seen concurrently. Background: According to results of epidemiological studies conducted by Korea Occupational Safety & Health Agency, 122 musculoskeletal disorders occurred during 1992 to 2008, in which manufacturing industry covers 96(78.7%) of total. However, this is an insufficient level and only occupies 39% based on the South Korea's manufacturing standard industrial classification(246 industries). Method: Firstly, the number of batches weighed on one day(460min) was investigated based on the work performed and Weight measured weekly. VCR recording was taken based on the level of liquid ingredients prescribed for 1batch using the Camcorder. After dividing a 356 sec video into 1 sec using the screen capture function in Gom player, the job classification was performed by analyzing the change of working postures, which revealed 148 working postures. Time measurement was decided by time of the postures was being maintained. Then, the REBA analysis was performed for the working postures. The ratio of Exposure time was calculated based on the measurement time and REBA Score. In addition, the recommendations were designed and implementation was carried out for the working postures with REBA Score higher than 3. Finally, after the intervention, REBA measurement, time measurement, and ratio of exposure time were calculated for the comparison of works before and after improvement. Results: The number of work elements was decreased by 30.4% from 148 to 103 after improvement. The results of time measurement showed that the time was reduced by 46.3% from 356 sec to 191 sec. And the ratio of exposure time was also improved by 52.1% from 0% to 52.1% after improvement. Conclusion: The reduction of time was found to improve the productivity of management. Furthermore, because the reduction of ratio of exposure time and the improvement of workload level are the improvement of discomfort, it would contribute to the improvement of the worker's psychological working posture. Application: These results would contribute to musculoskeletal disease prevention and management performance. Further studies for other industries would be needed based on this case study.
This study refers to develop a semi-automatic extraction of agricultural land use and vegetation information using high resolution satellite images. Data of IKONOS-2 satellite images (May 25 of 2001, December 25 of 2001, and October 23 of 2003), QuickBird-2 satellite images (May 1 of 2006 and November 17 of 2004) and KOMPSAT-2 satellite image (September 17 of 2007) which resemble with the spatial resolution and spectral characteristics of KOMPSAT-3 were used. The precise agricultural land use classification was tried using ISODATA unsupervised classification technique, and the result was compared with on-screen digitizing land use accompanying with field investigation. For the extraction of crop growth information, three crops of paddy, com and red pepper were selected, and the spectral characteristics were collected during each growing period using ground spectroradiometer. The vegetation indices viz. RVI, NDVI, ARVI, and SAVI for the crops were evaluated. The evaluation process was developed using the ERDAS IMAGINE Spatial Modeler Tool.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.