• Title/Summary/Keyword: Screen Classification

Search Result 92, Processing Time 0.027 seconds

Development of Hazardous Food Notification Application Using CNN Model (CNN 모델을 이용한 위해 식품 알림 애플리케이션의 개발)

  • Yoon, Dong Eon;Lee, Hyo Sang;Oh, Am Suk
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.3
    • /
    • pp.461-467
    • /
    • 2022
  • This research is to raise awareness of food safety by designing and supporting a hazard food information notification platform for consumers. To this end, the design was carried out by dividing the process into a data extraction process, an application screen design process, and a CNN-based food inference process. Data was collected through public data APIs and crawling, and it was sent to each activity screen designed for Android studios so that it could be output. As a result, when the platform is executed, information on hazardous food names, registration dates, food classification, manufacturing dates, recovery grades, recovery reasons, recovery methods, company names, barcode numbers, and packaging units can be intuitively and conveniently checked. In addition, CNN-based food inference processes allowed mobile cameras to infer harmful food and applied various quantization techniques such as Dynamic Range, Integer, and Float16 to compare the degree of improvement in inference performance. As a result, the group that applied basic quantization and treated device resources with GPU showed the greatest improvement in inference performance. Through this platform, it is expected that the reliability of food safety will be improved by making it more convenient for consumers to recognize food risks.

A Study on Ground Control System Design by User Classification to Increase Drone Platform Usability (드론 플랫폼 활용성 증대를 위한 사용자 맞춤형 지상 제어 시스템 설계 연구)

  • Ukjae Ryu;Yanghoon Kim
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.56-61
    • /
    • 2022
  • Various convergence technologies discovered through the 4th industrial revolution are permeating the industry. Drones are being used in industries such as construction, transportation, and national defense based on convergence technology. Quart-copter drone control is being used in a wide range of fields from the visual field of operation with the naked eye to the remote field of view using GCS. If we classify those who operate industrial drones, there are general pilots who directly use drones, instructors who train drone pilots, and mechanics who check the status of drones and use them for a long time. Depending on the shape of the screen of the drone GCS, a user's quick response or key data can be acquired. Accordingly, in this study, GUI characteristics were analyzed for the mission planner GCS and a screen composition method according to the user was proposed.

A Study on the Analysis of Patent Information in the Apparel Design -Focused on International Patent Classification- (의류디자인 분야의 특허정보 분석 -국제특허분류를 중심으로-)

  • 이금희
    • The Research Journal of the Costume Culture
    • /
    • v.11 no.6
    • /
    • pp.835-851
    • /
    • 2003
  • This study analyses patent information of apparel design using computer technology and researches the trend of patent application focused on International Patent Classification. In terms of trend by filling data, Patent application started first in 1974 and increased sharply in 1993 with 14 cases and increased to 25 cases in 2000. In case of Korea, they began somewhat late in 1996, but reached a similar level with the leading country in 2000. In terms of trend by applicant, Gerber Garment Technology, Inc. filed 7 cases TORAY IND INC, filed 6 cases Levi Strauss & Co. filed 4 cases, NEC HOME ELECTRONICS LTD filed 3 cases, TOYOBO CO LTD filed 3 cases. Japanese companies occupied 52% and United States's companies occupied 48%. In terms of trend by country, foreigner occupied 47% of the patents filed by United State. Japanese take up 10% of total patent of United States. Korean occupied 84% of total patent of Korea and foreigner, american occupied 16% of the patents filed by Korea. In regared to International Patent Classification, in the section level G filed 92 cases(53%). In class level, G06 marked the first place in United States, Japan, and Korea. In subclass level, G06F marksed the first place with 74 cases. G06T and A61B were regarded as the new technologies. The new technologies are representing the dimensions of garment or computer-rendered model, providing the virtual reality through the texture mapping, digital dressing room or virtual dressing, and performing or retriving display on a screen for the result of changing pattern ao dress design, The technologies of core patent are designing or producing custom manufactured item, providing or prealtering the data for pattern making and visually displaying, interactively generating or previewing of various articles.

  • PDF

Classification of Fishing Gear (어구의 분류)

  • 김대안
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.1
    • /
    • pp.33-41
    • /
    • 1996
  • In order to obtain the most favourable classification system for fishing gears, the problems in the existing systems were investigated and a new system in which the fishing method was adopted as the criterion of classification and the kinds of fishing gears were obtained by exchanging the word method into gear in the fishing methods classified newly for eliminating the problems was established. The new system to which the actual gears are arranged is as follows ; (1)Harvesting gear \circled1Plucking gears : Clamp, Tong, Wrench, etc. \circled2Sweeping gears : Push net, Coral sweep net, etc. \circled3Dredging gears : Hand dredge net, Boat dredge net, etc. (2)Sticking gears \circled1Shot sticking gears : Spear, Sharp plummet, Harpoon, etc. \circled2Pulled sticking gears : Gaff, Comb, Rake, Hook harrow, Jerking hook, etc. \circled3Left sticking gears : Rip - hook set line. (3)Angling gears \circled1Jerky angling gears (a)Single - jerky angling gears : Hand line, Pole line, etc. (b)Multiple - jerky angling gears : squid hook. \circled2Idly angling gears (a)Set angling gears : Set long line. (b)Drifted angling gears : Drift long line, Drift vertical line, etc. \circled3Dragged angling gears : Troll line. (4)Shelter gears : Eel tube, Webfoot - octopus pot, Octopus pot, etc. (5)Attracting gears : Fishing basket. (6)Cutoff gears : Wall, Screen net, Window net, etc. (7)Guiding gears \circled1Horizontally guiding gears : Triangular set net, Elliptic set net, Rectangular set net, Fish weir, etc. \circled2Vertically guiding gears : Pound net. \circled3Deeply guiding gears : Funnel net. (8)Receiving gears \circled1Jumping - fish receiving gears : Fish - receiving scoop net, Fish - receiving raft, etc. \circled2Drifting - fish receiving gears (a)Set drifting - fish receiving gears : Bamboo screen, Pillar stow net, Long stow net, etc. (b)Movable drifting - fish receiving gears : Stow net. (9)Bagging gears \circled1Drag - bagging gears (a)Bottom - drag bagging gears : Bottom otter trawl, Bottom beam trawl, Bottom pair trawl, etc. (b)Midwater - drag gagging gears : Midwater otter trawl, Midwater pair trawl, etc. (c)Surface - drag gagging gears : Anchovy drag net. \circled2Seine - bagging gears (a)Beach - seine bagging gears : Skimming scoop net, Beach seine, etc. (b)Boat - seine bagging gears : Boat seine, Danish seine, etc. \circled3Drive - bagging gears : Drive - in dustpan net, Inner drive - in net, etc. (10)Surrounding gears \circled1Incomplete surrounding gears : Lampara net, Ring net, etc. \circled2Complete surrounding gears : Purse seine, Round haul net, etc. (11)Covering gears \circled1Drop - type covering gears : Wooden cover, Lantern net, etc. \circled2Spread - type covering gears : Cast net. (12)Lifting gears \circled1Wait - lifting gears : Scoop net, Scrape net, etc. \circled2Gatherable lifting gears : Saury lift net, Anchovy lift net, etc. (13)Adherent gears \circled1Gilling gears (a)Set gilling gears : Bottom gill net, Floating gill net. (b)Drifted gilling gears : Drift gill net. (c)Encircled gilling gears : Encircled gill net. (d)Seine - gilling gears : Seining gill net. (e)Dragged gilling gears : Dragged gill net. \circled2Tangling gears (a)Set tangling gears : Double trammel net, Triple trammel net, etc. (b)Encircled tangling gears : Encircled tangle net. (c)Dragged tangling gears : Dragged tangle net. \circled3Restrainting gears (a)Drifted restrainting gears : Pocket net(Gen - type net). (b)Dragged restrainting gears : Dragged pocket net. (14)Sucking gears : Fish pumps.

  • PDF

Screening Vital Few Variables and Development of Logistic Regression Model on a Large Data Set (대용량 자료에서 핵심적인 소수의 변수들의 선별과 로지스틱 회귀 모형의 전개)

  • Lim, Yong-B.;Cho, J.;Um, Kyung-A;Lee, Sun-Ah
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.2
    • /
    • pp.129-135
    • /
    • 2006
  • In the advance of computer technology, it is possible to keep all the related informations for monitoring equipments in control and huge amount of real time manufacturing data in a data base. Thus, the statistical analysis of large data sets with hundreds of thousands observations and hundred of independent variables whose some of values are missing at many observations is needed even though it is a formidable computational task. A tree structured approach to classification is capable of screening important independent variables and their interactions. In a Six Sigma project handling large amount of manufacturing data, one of the goals is to screen vital few variables among trivial many variables. In this paper we have reviewed and summarized CART, C4.5 and CHAID algorithms and proposed a simple method of screening vital few variables by selecting common variables screened by all the three algorithms. Also how to develop a logistics regression model on a large data set is discussed and illustrated through a large finance data set collected by a credit bureau for th purpose of predicting the bankruptcy of the company.

An Efficient Feature Point Extraction and Comparison Method through Distorted Region Correction in 360-degree Realistic Contents

  • Park, Byeong-Chan;Kim, Jin-Sung;Won, Yu-Hyeon;Kim, Young-Mo;Kim, Seok-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.93-100
    • /
    • 2019
  • One of critical issues in dealing with 360-degree realistic contents is the performance degradation in searching and recognition process since they support up to 4K UHD quality and have all image angles including the front, back, left, right, top, and bottom parts of a screen. To solve this problem, in this paper, we propose an efficient search and comparison method for 360-degree realistic contents. The proposed method first corrects the distortion at the less distorted regions such as front, left and right parts of the image excluding severely distorted regions such as upper and lower parts, and then it extracts feature points at the corrected region and selects the representative images through sequence classification. When the query image is inputted, the search results are provided through feature points comparison. The experimental results of the proposed method shows that it can solve the problem of performance deterioration when 360-degree realistic contents are recognized comparing with traditional 2D contents.

Reliability of the scapular dyskinesis test yes-no classification in asymptomatic individuals between students and expert physical therapists

  • Lawrence S. Ramiscal;Lori A. Bolgla;Chad E. Cook;John S. Magel;Stephen A. Parada;Raymond Chong
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.4
    • /
    • pp.321-327
    • /
    • 2022
  • Background: Scapular dyskinesis is considered a risk factor for the shoulder pain that may warrant screening for prevention. Clinicians of all experience screen scapular dyskinesis using the scapular dyskinesis test yes-no classification (Y-N), yet its reliability in asymptomatic individuals is unknown. We aimed to establish Y-N's intra- and inter-reliability between students and expert physical therapists. Methods: We utilized a cross-sectional design using consecutive asymptomatic subjects. Six students and two experts rated 100 subjects using the Y-N. Cohen's kappa (κ) and Krippendorff's alpha (K-α) were calculated to determine intra- and inter-rater reliability. Results: Intra- and inter-rater values for experts were κ=0.92 (95% confidence interval [CI], 0.91-0.93) and 0.85 (95% CI, 0.84-0.87) respectively; students were κ=0.77 (95% CI, 0.75-0.78) and K-α=0.63 (95% CI, 0.58-0.67). Conclusions: The Y-N is reliable in detecting scapular dyskinesis in asymptomatic individuals regardless of experience.

Smart Mirror for Facial Expression Recognition Based on Convolution Neural Network (컨볼루션 신경망 기반 표정인식 스마트 미러)

  • Choi, Sung Hwan;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.200-203
    • /
    • 2021
  • This paper introduces a smart mirror technology that recognizes a person's facial expressions through image classification among several artificial intelligence technologies and presents them in a mirror. 5 types of facial expression images are trained through artificial intelligence. When someone looks at the smart mirror, the mirror recognizes my expression and shows the recognized result in the mirror. The dataset fer2013 provided by kaggle used the faces of several people to be separated by facial expressions. For image classification, the network structure is trained using convolution neural network (CNN). The face is recognized and presented on the screen in the smart mirror with the embedded board such as Raspberry Pi4.

  • PDF

Land Cover Object-oriented Base Classification Using Digital Aerial Photo Image (디지털항공사진영상을 이용한 객체기반 토지피복분류)

  • Lee, Hyun-Jik;Lu, Ji-Ho;Kim, Sang-Youn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.1
    • /
    • pp.105-113
    • /
    • 2011
  • Since existing thematic maps have been made with medium- to low-resolution satellite images, they have several shortcomings including low positional accuracy and low precision of presented thematic information. Digital aerial photo image taken recently can express panchromatic and color bands as well as NIR (Near Infrared) bands which can be used in interpreting forest areas. High resolution images are also available, so it would be possible to conduct precision land cover classification. In this context, this paper implemented object-based land cover classification by using digital aerial photos with 0.12m GSD (Ground Sample Distance) resolution and IKONOS satellite images with 1m GSD resolution, both of which were taken on the same area, and also executed qualitative analysis with ortho images and existing land cover maps to check the possibility of object-based land cover classification using digital aerial photos and to present usability of digital aerial photos. Also, the accuracy of such classification was analyzed by generating TTA(Training and Test Area) masks and also analyzed their accuracy through comparison of classified areas using screen digitizing. The result showed that it was possible to make a land cover map with digital aerial photos, which allows more detailed classification compared to satellite images.

Selection and Classification of Bacterial Strains Using Standardization and Cluster Analysis

  • Lee, Sang Moo;Kim, Kyoung Hoon;Kim, Eun Joong
    • Journal of Animal Science and Technology
    • /
    • v.54 no.6
    • /
    • pp.463-469
    • /
    • 2012
  • This study utilized a standardization and cluster analysis technique for the selection and classification of beneficial bacteria. A set of synthetic data consisting of 100 individual variables with three characteristics was created for analysis. The three characteristics assigned to each independent variable were designated to have different numeric scales, averages, and standard deviations. The variables were bacterial isolates at random, and the three characteristics were fermentation products, including cell yield, antioxidant activity of culture, and enzyme production. A standardization method utilizing a standard normal distribution equation to record fermentation yields of each isolate was employed to weight their different numeric scales and deviations. Following transformation, the data set was analyzed by cluster analysis. The Manhattan method for dissimilarity matrix construction along with complete linkage technique, an agglomerative method for hierarchical cluster analysis, was employed using statistical computing program R. A total of 100 isolates were classified into groups A, B, and C. In a comparison of the characteristics of each group, all characteristics in groups A and C were higher than those of group B. Isolates displaying higher cell yield were classified as group A, whereas those isolates showing high antioxidant activity and enzyme production were assigned to group C. The results of the cluster analysis can be useful for the classification of numerous isolates and the preparation of an isolation pool using numerical or statistical tools. The present study suggests that a simple technique can be applied to screen and select beneficial microbes using the freely downloadable statistical computing program R.