• Title/Summary/Keyword: Scooter

Search Result 77, Processing Time 0.024 seconds

Analysis of Success Factors of Electric Scooter Sharing Service Using User Review Text Mining

  • Kyoung-ae Seo;Jung Seung Lee
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.2
    • /
    • pp.19-30
    • /
    • 2023
  • This study aims to analyze service improvement and success factors of electric scooter sharing service companies by using text mining after collecting reviews of shared electric scooter service applications among various models of sharing economy. In this study, the factors of satisfaction and dissatisfaction of service users were identified using the term frequency inverse document frequency (TF-IDF) technique, and topics for each keyword were extracted using the Latent Dirichlet Allocation (LDA) Topic Modeling technique. According to the analysis results, the main topics were entertainment, safety, service area, application complaints, use complaints, convenience, and mobility. Using the analysis results of this study, employees and researchers of electric scooter sharing service companies will be able to contribute to the improvement and success of related services.

Development of a DGPS-Based Localization and Semi-Autonomous Path Following System for Electric Scooters (전동 스쿠터를 위한 DGPS 기반의 위치 추정 및 반 자율 주행 시스템 개발)

  • Song, Ui-Kyu;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.674-684
    • /
    • 2011
  • More and more elderly and disabled people are using electric scooters instead of electric wheelchairs because of higher mobility. However, people with high levels of impairment or the elderly still have difficulties in driving the electric scooters safely. Semi-autonomous electric scooter system is one of the solutions for the safety: Either manual driving or autonomous driving can be used selectively. In this paper, we implement a semi-autonomous electric scooter system with functions of localization and path following. In order to recognize the pose of electric scooter in outdoor environments, we design an outdoor localization system based on the extended Kalman filter using DGPS (Differential Global Positioning System) and wheel encoders. We added an accelerometer to make the localization system adaptable to road condition. Also we propose a path following algorithm using two arcs with current pose of the electric scooter and a given path in the map. Simulation results are described to show that the proposed algorithms provide the ability to drive an electric scooter semi-autonomously. Finally, we conduct outdoor experiments to reveal the practicality of the proposed system.

Emission Characteristics of a Passing Two-stroke Scooter using at a Roadside Measurement (도로변 측정을 이용한 2행정 스쿠터의 대기오염물질 배출특성 연구)

  • Woo, Dae-Kwang;Lee, Seung-Bok;Bae, Gwi-Nam;Lim, Cheol-Soo;Kim, Tae-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.663-671
    • /
    • 2011
  • Although a scooter is a convenient transportation means for a short distance traveling with a light package in the congested urban center, it might be one of the significant sources of air pollutants to which many people can easily be exposed during its passing-by. In this paper, we measured concentrations of gases and particles emitted from a scooter at roadside with no other traffic. To understand the characteristics of scooter emissions with respect to driving speed (idling, 30 km/h) at the roadside, total particle number concentration, particle size distribution, average surface area of particles deposited in the alveolar region, and concentrations of black carbon, CO, and $NO_x$ were measured. The concentrations of the particle number, surface area of deposited particles, CO, and $NO_x$ were highly fluctuated in the scooter's idling condition. The trends of particle number concentration, CO, and $NO_x$ generation were similar to one another. When the scooter started to move, all of $NO_x$, CO and particle number concentrations increased and after it passed by at the speed of 30 km/h, the concentration peaks of the particles and gases appeared at the same time. Unimodal size distribution with ~70 and ~93 nm mode diameters was observed for the idling and cruising condition, respectively. From this work, we found that emission from a passing vehicle could be characterized using a roadside monitoring technique.

Manufacturing of the Portable Electric Scooter Prototype According to Variation of Wheel Number

  • Kwon, Young Woong;Ham, Sung Hoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.51-58
    • /
    • 2020
  • With the emergence of the words Personal Mobility (P.M.) or Smart Mobility (S.M.), which are terms for personal transportation, the activities of related technologies are increasing with the research. Personal transportation is basically used as a short distance transportation method using electrical energy. As personal mobility became more popular, the resulting products and studies are spreading throughout the country. Most of the electric scooters, which are personal vehicles, are mostly imported from China. This is due to the fact that the price competitiveness of major components of electric scooters is owned in China. At this point, the domestic research direction is considered to be desirable in terms of composition and design of the electric scooter body. In this study, the models of portable electric scooters according to the number of wheels mounted on portable electric scooters were presented and the prototypes were produced accordingly. The number of wheels applied to the electric scooter was 2 and 3 and 4; the contents and advantages and disadvantages of the proposed portable electric scooter models were reviewed.

A PMSM Driven Electric Scooter System with a V-Belt Continuously Variable Transmission Using a Novel Hybrid Modified Recurrent Legendre Neural Network Control

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1008-1027
    • /
    • 2014
  • An electric scooter with a V-belt continuously variable transmission (CVT) driven by a permanent magnet synchronous motor (PMSM) has a lot of nonlinear and time-varying characteristics, and accurate dynamic models are difficult to establish for linear controller designs. A PMSM servo-drive electric scooter controlled by a novel hybrid modified recurrent Legendre neural network (NN) control system is proposed to solve difficulties of linear controllers under the occurrence of nonlinear load disturbances and parameters variations. Firstly, the system structure of a V-belt CVT driven electric scooter using a PMSM servo drive is established. Secondly, the novel hybrid modified recurrent Legendre NN control system, which consists of an inspector control, a modified recurrent Legendre NN control with an adaptation law, and a recouped control with an estimation law, is proposed to improve its performance. Moreover, the on-line parameter tuning method of the modified recurrent Legendre NN is derived according to the Lyapunov stability theorem and the gradient descent method. Furthermore, two optimal learning rates for the modified recurrent Legendre NN are derived to speed up the parameter convergence. Finally, comparative studies are carried out to show the effectiveness of the proposed control scheme through experimental results.

High Power BLDC Motor Control System of Electric Scooter for Disabled Person (장애인용 전동스쿠터를 위한 고출력 BLDC 모터 제어시스템)

  • Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1388-1392
    • /
    • 2013
  • Electric scooter has been using short-lived, low-efficiency DC motor. And motor control system is equipped with imported uniformly, so there is no product differentiation. Also, product design according to the characteristics of disability is difficult. In this study, BLDC motor control system to specialize in a electric scooter for disabled was developed with a semi-permanent features of life, low price, and high performance. This development will also contribute to the activation of the related industries, as well as be able to secure price competitiveness of domestic electric scooter.

Design and Analysis of AFPM Coreless Motor for Electric Scooter

  • Kim, Chul-Ho;Oh, Chul-Soo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.90-96
    • /
    • 2003
  • This paper deals with the design and the characteristic analysis of a coreless axial flux permanent magnet (AFPM) motor. Because a direct-drive wheel motor is easily derived from it, the AFPM motor is very suitable for application in an electric scooter. Compared to a conventional motor of the same size and weight, the AFPM motor is proven to have more power and torque per unit weight. In this paper, an AFPM coreless motor with a double-sided rotor disk equipped with Nd-Fe-B rare earth magnets is designed and a prototype of the motor is manufactured, which will be properly applied for the low-speed, and high-torque direct drive required for the electric scooter. The manufactured prototype of the motor has a rating of 300W, 510rpm, 5.6Nm, and 85% efficiency.

Analysing Spatial Usage Characteristics of Shared E-scooter: Focused on Spatial Autocorrelation Modeling (공유 전동킥보드의 공간적 이용특성 분석: 공간자기상관모형을 중심으로)

  • Kim, Sujae;Koack, Minjung;Choo, Sangho;Kim, Sanghun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.54-69
    • /
    • 2021
  • Policy improvement such as the revision of the Road Traffic Act are proposed for personal mobility(especially e-scooter) usage. However, there is not enough discussion to solve the problem of using shared e-scooter. In this study, we analyze the influencing factors that amount of pick-up and drop-off of shared e-scooter by dividing the Seoul into a 200m grid. we develop spatial auotcorrelation model such as spatial lag model, spatial error model, spatial durbin model, and spatial durbin error model in order to consider the characteristics of the aggregated data based on a specific space, and the spatial durbin error model is selected as the final model. As a result, demographic factor, land use factor, and transport facility factors have statistically significant impacts on usage of shared e-scooter. The result of this study will be used as basic data for suggesting efficient operation strategies considering the characteristics of weekday and weekend.

Design of a Winch Lift for a Scooter to Get On and Off a Coach Van (스쿠터 승하차를 위한 밴승합차용 윈치 리프트 설계)

  • Lee Dug-Young;Youn Jae-Woong;Lee Soo Cheol;Lim Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.189-196
    • /
    • 2005
  • The numbers of the elder are rapidly growing who wants to enhance social activities, because Korea is already an aging society since 2000. The mobility and accessibility are the key issues to enhance them. The electric motor scooter and the power wheel chair are efficient movable means at a short range. It would be needed to get on and off them if the elder wants use them after arriving a long distant destination. But the electric scooter is too heavy for a man to get on and off a coach van. The motor winch lift is developed for the elder and the handicapped to get on and off a van easily. The lift consists of 3-linkage which can be installed in a trunk of a van with a small space. The clearance and stress of each component are checked by a computer simulation. The prototype was made. and the performances of safety and comfortableness were verified by operational ability test and durability test.

The Control Method of In-Wheel PMSM for Electric Scooter using Speed Observer (속도 관측기를 이용한 전기스쿠터용 IN-WHEEL 영구자석 동기 전동기의 제어 방법)

  • Son, Tae-Sik;Lee, Yong-Kyun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.130-136
    • /
    • 2011
  • This paper presents the torque control algorithm of a permanent magnet synchronous motor(PMSM) for an electric scooter. The volume of the in-wheel type motor is restricted due to the complicated mechanical structure in wheel of an electric scooter, so the hall sensors instead of resolver and encoder for the rotor position sensors are installed. In this paper, the rotor speed and position are estimated from the speed estimator for vector control of a PMSM with hall sensors. The motor starts to rotate at standstill in BLDC mode with 120 degree conduction. After start up, the operating mode is changed to the vector control with maximum torque per ampere(MTPA) operation at low speeds and flux weakening control at high speeds. The performance of the proposed control algorithm is verified through the experiment in the electric scooter.