• Title/Summary/Keyword: Sclerotial germination

Search Result 15, Processing Time 0.021 seconds

Effects of Some Environmental Factors on Mycerial Growth, Sporulation and Sclerotial Formation of Botrytis elliptica (Berk.) Cooke (백합(百合) 잎마름병균(病菌)의 균사생장(菌絲生長), 포자형성(胞子形成) 및 균핵형성(菌核形成)에 미치는 몇가지 환경요인(環境要因)의 영향(影響))

  • Park, Jong Seong;Kim, Hong Gi
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 1988
  • This experiment was conducted to study the effect of some environmental factors on mycerial growth, sporulation and sclerotial formation of Botrytis elliptica cultured on artificial media. Mycerial growth of B. elliptica was the most favorable on V-8 juice agar among the seven different media tested and sporulation of the fungus was favorable on the medium under NUV light irradiation. Abundant conidia could be obtained from V-8 juice agar medium by NUV light irradiation after 3 days of incubation at $23^{\circ}C$ under darkness. The optimum temperature for mycerial growth and conidial germination was $23^{\circ}C$ and the mycerial growth was favorable at relatively lower temperature ranged $19^{\circ}C$ to $23^{\circ}C$. The optimum pH of the medium for mycerial growth of this fungus ranged 4.5 to 5.0 and that was inhibited at higher pH of the media. Mycerial growth of the fungus was not highly influenced by irradiation of fluorescent light, however sporulation was stimulated under NUV light irradiation. Sclerotia of B. elliptica were formed when it was cultured at lower temperature below $19^{\circ}C$.

  • PDF

Density and Viability of Sclerotia of Rice Sheath Blight Pathogen Overwintering in Field (벼잎집무늬마름병균(病菌) 월동균핵(越冬菌核)의 밀도(密度)와 활성(活性))

  • Kim, Choong-Hoe;Kim, Chang-Kyu
    • Korean journal of applied entomology
    • /
    • v.26 no.2 s.71
    • /
    • pp.99-106
    • /
    • 1987
  • Three post-harvest fields each in four rice growing areas, Iri, Naju, Jinju and Taegu were randomly selected and surveyed during December 1986 to examine sclerotial density of Rhizoctonia solani overwintering in the field. Surface soil of $0.09m^2$ area was sampled in each field with three replications and sieved to collect sclerotia. Germiability and pathogenicity of collected sclerotia were examined in the laboratory. Number of sclerotia $({\times}10^6)/ha$ in Iri, Naju, Jinju, and Taegu was estimated from the sample as 2.7, 1.2, 0.7 and 0.6, respectively. Based on sample variance with simple random sampling in each area, number of sampling required for estimating average sclerotial density with the precision of 10% apart from a chance of 1 in 20 was calculated to 41, 132, 232, and 395 for Iri, Naju, Jinju and Taegu, respectively. Percentage of germination of sampled sclerotia on potato sucrose agar (PSA) ranged from 42 to 78% depending on the area, and averaged 60%. About 49% of the germinated sclerotia were pathogenic to a rice cultivar Jinheung that was used to test pathogenicity of the sclerotia. Proportion of viable sclerotia that have both germiability and pathogenicity was thus estimated to 0.29 of total sclerotia collected. R. solani cultures obtained from the sclerotia could be distinguished into three groups based on colony morphology on PSA. Size and number of sclerotia formed on PSA differed between group but were not associated with pathogenicity to Jinheung.

  • PDF

Ecological Studies on the Occurrence of Rice False Smut (벼 이삭누룩병(病)의 발생(發生) 생태(生態)에 관(關)한 연구(硏究))

  • In, Moo Seong;Park, Jong Seong;Yu, Seung Hun
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.242-252
    • /
    • 1985
  • In order to get information on the ecology of rice false smut, germination ability and pathogenicity of sclerotia and chlamydospores of the pathogen, environmental conditions affecting the disease outbreak and varietal resistance have been investigated. 1. The degree of outbreak of rice false smut was higher in the upland rice in comparison with the paddy field rice in respect to the number of affected grains per ear, the size and weight of smut balls formed on affected grains as well as the ratio of sclerotial formation produced on smut balls. 2. Germination percentage and days required for germination of overwintered sclerotia placed on the soil surface in July were 81% and 19 days, respectively, while those of overwintered sclerotia treated in May were 60-70% and 41 days. Sclerotia placed on the soil surface or under 1 cm depth of the soil surface and incubated at $25-30^{\circ}C$ were germinated well, whereas those placed under 3 cm or 5 cm depth of the soil surface were not germinated at all. Germinability and stroma productivity of sclerotia were reduced when the sclerotia were cutted into small pieces. 3. The average number of stroma formed on a sclerotium was six and that of perithecia formed in a stroma was about 50 to 140. 4. Percentage of germination of chlamydospores on the yellow balls was very high and was decreased as the color of the balls being darken with maturation. 5. Panicle of rice plants were successfully infected by injection inoculation with suspention of ascospores and chlamydospores of the pathogen to the sheaths at the booting stages, while seeding infection by spraying with suspensions of chlamydospores was unsuccessful. 6. More number of infected grains was distributed on basal parts of an affected ear than that of infected ones distributed upper parts of the ear, when the affected ear was divided into five parts from its basal portion to the apical of the ear. 7. The occurrence of the disease was more severe in the late maturing varieties of rice in comparison with the early maturing varieties. 8. When the level of nitrogen applied was increased, the incidence of disease increased, and the infection percentage of the disease was increased as the transplanting date was delayed. 9. The weight of panicles and 1000 kernels and the ratio of ripenness were reduced, and the contamination degree of grains with chlamydospores were increased as the number of smut balls per panicle were increased.

  • PDF

Studies on Sclerotium rolfsii Sacc. isolated from Magnolia kobus DC. in Korea (목련(Magnolia kobus DC.)에서 분리한 흰비단병균(Sclerotium rolfsii Sacc.)에 관한 연구)

  • Kim Kichung
    • Korean journal of applied entomology
    • /
    • v.13 no.3 s.20
    • /
    • pp.105-133
    • /
    • 1974
  • The present study is an attempt to solve the basic problems involved in the control of the Sclerotium disease. The biologic stranis of Sclerotium rolfsii Sacc., pathogen of Sclerotium disease of Magnolia kobus, were differentiated, and the effects of vitamins, various nitrogen and carbon sources on its mycelial growth and sclerotial production have been investigated. In addition the relationship between the cultural filtrate of Penicillium sp. and the growth of Sclerotium rolfsii, the tolerance of its mycelia or sclerotia to moist heat or drought and to Benlate (methyl-(butylcarbamoy 1)-2-benzimidazole carbamate), Tachigaren (3-hydroxy-5-methylisoxazole) and other chemicals were also clarified. The results are summarizee as follows: 1. There were two biologic strains, Type-l and Type-2 among isolates. They differed from each other in the mode of growth and colonial appearance on the media, aversion phenomenon and in their pathogenicity. These two types had similar pathogenicity to the Magnolia kobus and Robinia pseudoacasia, but behaved somewhat differently to the soybaen and cucumber, the Type-l being more virulent. 2. Except potassium nitrite, sodium nitrite and glycine, all of the 12 nitrogen sources tested were utilized for the mycelial growth and sclerotial production of this fungus when 10r/l of thiamine hydrochloride was added in the culture solution. Considering the forms of nitrogen, ammonium nitrogen was more available than nitrate nitrogen for the growth of mycelia, but nitrate nitrogen was better for sclerotia formation. Organic nitrogen showed different availabilities according to compounds used. While nitrite nitrogen was unavailable for both mycelial growth and sclerotial formation whether thiamine hydrochlioride was added or not. 3. Seven kinds of carbon sources examined were not effective in general, as long as thiamine hydrochloride was not added. When thiamine hydrochloride was added, glucose and saccharose exhibited mycelial growth, while rnaltose and soluble starch gave lesser, and xylose, lactose, and glycine showed no effect at all,. In the sclerotial production, all the tested carbon sources, except lactose, were effective, and glucose, maltose, saccharose, and soluble starch gave better results. 4. At the same level of nitrogen, the amount of mycelial growth increased as more carbon Sources were applied but decreased with the increase of nitrogen above 0.5g/1. The amount of sclerotial production decreased wi th the increase of carbon sources. 5. Sclerotium rolfsii was thiamine-defficient and required thiamine 20r/l for maximun growth of mycelia. At a higher concentration of more than 20r/l, however, mycelial growth decreased as the concentration increased, and was inhibited at l50r/l to such a degree of thiamine-free. 6. The effect of the nitrogen sources on the mycelial growth under the presence of thiamine were recognized in the decreasing order of $NH_4NO_3,\;(NH_4)_2SO_4,\;asparagine,\;KNO_3$, and their effects on the sclerotial production in the order of $KNO_3,\;NH_4NO_3,\;asparagine,\;(NH_4)_2SO_4$. The optimum concentration of thiamine was about 12r/l in $KNO_3$ and about 16r/l in asparagine for the growth of mycelia; about 8r/l in $KNO_3$ and $NH_4NO_3$, and 16r/l in asparagine for the production of sclerotia. 7. After the fungus started to grow, the pH value of cultural filtrate rapidly dropped to about 3.5. Hereafter, its rate slowed down as the growth amount increased and did not depreciated below pH2.2. 8. The role of thiamine in the growth of the organism was vital. If thiamine was not added, the combination of biotin, pyridoxine, and inositol did not show any effects on the growth of the organism at all. Equivalent or better mycelial growth was recognized in the combination of thiamine+pyridoxine, thiamine+inositol, thiamine+biotin+pyridoxine, and thiamine+biotin+pyridoxine+inositol, as compared with thiamine alone. In the combinations of thiamine+biotin and thiamine+biotin+inositol, mycelial growth was inhibited. Sclerotial production in dry weight increased more in these combinations than in the medium of thiamine alone. 9. The stimulating effects of the Penicillium cultural filtrate on the mycelial growth was noticed. It increased linearly with the increase of filtrate concentration up to 6-15 ml/50ml basal medium solution. 10. $NH_4NO_3$. as a nitrogen source for mycelial growth was more effective than asparasine regardless of the concentration of cultural filtrate. 11. In the series of fractionations of the cultural filtrate, mycelial growth occured in unvolatile, ether insoluble cation-adsorbed or anion-unadsorbed substance fractions among the fractions of volatile, unvolatile acids, ether soluble organic acids, ether insoluble, cation-adsorbed, cation-unadsorbed, anion-adsorbed and anion-unadsorbed. and anion-un-adsorbed substance tested. Sclerotia were produced only in cation-adsorbed fraction. 12. According to the above results, it was assumed that substances for the mycelial growth and sclerotial formation and inhibitor of sclerotial formation were include::! in cultural filtrate and they were quite different from each other. I was further assumed that the former two substances are un volatile, ether insotuble, and adsorbed to cation-exchange resin, but not adsorbed to anion, whereas the latter is unvolatile, ether insoluble, and not adsorbed to cation or anion-exchange resin. 13. Seven amino acids-aspartic acid, cystine, glysine, histidine, Iycine, tyrosine and dinitroaniline-were detected in the fractions adsorbed to cation-exchange resin by applying the paper chromatography improved with DNP-amino acids. 14. Mycelial growth or sclerotial production was not stimulated significantly by separate or combined application of glutamic acid, aspartic acid, cystine, histidine, and glysine. Tyrosine gave the stimulating effect when applied .alone and when combined with other amino acids in some cases. 15. The tolerance of sclerotia to moist heat varied according to their water content, that was, the dried sclerotia are more tolerant than wet ones. The sclerotia harvested directly from the media, both Type-1 and Type-2, lost viability within 5 minutes at $52^{\circ}C$. Sclerotia dried for 155 days at$26^{\circ}C$ had more tolerance: sclerotia of Type-l were killed in 15 mins. at $52^{\circ}C$ and in 5 mins. at $57^{\circ}C$, and sclerotia of Type-2 were killed in 10 mins. both at $52^{\circ}C$ or $57^{\circ}C$. 16. Cultural sclerotia of both strains maintained good germinability for 132 days at$26^{\circ}C$. Natural sclerotia of them stored for 283 days under air dry condition still had good germinability, even for 443 days: type-l and type-2 maintained $20\%$ and $26.9\%$ germinability, respectively. 17. The tolerance to low temperature increased in the order of mycelia, felts and sclerotia. Mycelia completely lost the ability to grow within 1 week at $7-8^{\circ}C$> below zero, while mycelial felts still maintained the viability after .3 weeks at $7-20^{\circ}C$ below zero, and sclerotia were even more tolerant. 18. Sclerotia of type-l and type-2 were killed when dipped into the $0.05\%$ solution of mercury chloride for 180 mins. and 240 mins. respectively: and in the $0.1\%$ solution, Type-l for 60 mins. and Type-2 for 30 mins. In the $0.125\%$ uspulun solution, Type-l sclerotia were killed in 180 mins., and those of Type-2 were killed for 90 mins. in the$0.125\%$solution. Dipping into the $5\%$ copper sulphate solution or $0.2\%$ solution of Ceresan lime or Mercron for 240 mins. failed to kill sclerotia of either Type-l or Type-2. 19. Inhibitory effect on mycelial growth of Benlate or Tachi-garen in the liquid culture increased as the concentration increased. 6 days after application, obvious inhibitory effects were found in all treatments except Benlate 0.5ppm; but after 12 days, distingushed diflerences were shown among the different concentrations. As compared with the control, mycelial growth was inhibited by $66\%$ at 0.5ppm and by $92\%$ at 2.0ppm of Benlate, and by$54\%$ at 1ppm and about $77\%$ at 1.5ppm or 2.0ppm of Tachigaren. The mycelial growth was inhibited completely at 500ppm of both fungicides, and the formation of sclerotia was checked at 1,000ppm of Benlate ant at 500ppm or 1,000ppm of Tachigaren. 20. Consumptions of glucose or ammonium nitrogen in the culture solution usually increased with the increment of mycelial growth, but when Benlate or Tachigaren were applied, consumptions of glucose or ammonium nitrogen were inhibited with the increment of concentration of the fungicides. At the low concentrations of Benlate (0.5ppm or 1ppm), however, ammonium nitrogen consumption was higher than that of the ontrol. 21. The amount of mycelia produced by consuming 1mg of glucose or ammonium nitrogen in the culture solution was lowered markedly by Benlate or Tachigaren. Such effects were the severest on the third day after their treatment in all concentrations, and then gradually recovered with the progress of time. 22. In the sand culture, mycelial growth was not inhibited. It was indirectly estimated by the amount of $CO_2$ evolved at any concentrations, except in the Tachigaren 100mg/g sand in which mycelial growth was inhibited significantly. Sclerotial production was completely depressed in the 10mg/g sand of Benlate or Tachigaren. 23. There was no visible inhibitory effect on the germination of sclerotia when the sclerotia were dipped in the solution 0.1, 1.0, 100, 1.000ppm of Benlate or Tachigaren for 10 minutes or even 20 minutes.

  • PDF

Biological Control of Sclerotinia sclerotiorum in Lettuce Using Antagonistic Bacteria (길항세균을 이용한 상추 균핵병의 생물학적 방제)

  • Chon, Bong-Goan;Park, Suji;Kim, Jin-Won
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.12-20
    • /
    • 2013
  • To isolate antagonistic bacteria against sclerotinia rot of lettuce, caused by Sclerotinia sclerotiorum, soil samples were collected from the diseased greenhouse field in Namyangju city, Gyeong-gi province from 2007 to 2008. A total of 196 bacterial isolates were isolated using serial dilution method. In dual culture assay in vitro, 26 isolates showed more than 80% of inhibition rates of mycelial growth of S. sclerotiorum. Based on 16S rDNA sequence analysis, the 26 isolates were identified as Bacillus megaterium, B. cereus, B. subtilis, Arthrobacter nicotianae, A. ramosus, Pseudomonas filiscindens, Stenotrophomonas maltophilia, Brevibacterium frigoritolerans and Sphingobacterium faecium. The 26 isolates inhibited the mycelial growth of S. sclerotiorum up to 80% and the sclerotial germination 0-100%. In the greenhouse pot test of ten isolates conducted in summer, 2 isolates B. megaterium (DK6) and B. cereus (C210) showed control efficacy on sclerotia viability of S. sclerotiorum, 20% and 35%, respectively. In the greenhouse pot test in winter, the disease incidence of the control group was 80%, whereas those of 9 isolates among 26 were approximately 20%. From the result, the 9 isolates are expected as potentially antagonistic bacteria for biological control of sclerotinia rot of lettuce caused by S. sclerotiorum.