• Title/Summary/Keyword: Scirpus hotarui

Search Result 16, Processing Time 0.015 seconds

Studies on Controlling Mixed Annual and Perennial Weeds in Paddy Fields - On the Herbicidal Properties of Perfluidone - (수종(數種) 다년생잡초혼생답(多年生雜草混生沓)에 있어서 제초제(除草劑)에 의한 효과적(效果的)인 잡초방제(雜草防除) - Perfluidone의 작용특성구명(作用特性究明)을 중심(中心)으로 -)

  • Ryang, H.S.;Han, S.S.
    • Korean Journal of Weed Science
    • /
    • v.3 no.1
    • /
    • pp.75-99
    • /
    • 1983
  • The herbicidal properties of perfluidone [1,1,1-trifluoro-N-2-methyl-4-(phenylsulponyl) phenyl methanesulfonamide] were investigated in pots and paddy fields. At the rate of 2.0kg prod./10a, perfluidone did not cause any injury to the 4 leaf stage (LS) rice seedlings. Although the crop injury increased with increasing the application rate, the injury caused by 16kg prod. perfluidone/10a gave rise to only 30% yield reduction. The crop injury was greatest when perfluidone was applied 2 days before transplanting and decreased as the application time delayed. Perfluidone showed greater crop injury to the 3 LS seedlings, at more than 7cm water depth, and at high temperature than to the 4 LS seedlings, at 3-5cm water depth, and at low temperature. Indica and indica ${\times}$ japonica rice varieties were generally more sensitive to perfluidone than japonica rice variety. Perfluidone effectively controlled most of annual weeds and such perennial weeds as Sagittaria pygmaea MIQ., Potamogeton distinctus A. BENN, Cyperus serotinus ROTTB, Scirpus maritimus L., Eleocharis kuroguwai OHWL, and Scirpus hotarui OHWL, whereas Sagittaria trifolia L. and Polygonum hydropiper SPACH. were tolerent to perfluidone. The weeding effect decreased with increasing the leaching amount of water and the overflowing of irrigated water within 24 hours after the herbicide application. When the application time was done later than 8 days after transplanting, the perennial weeds were shown at deeper soil layers, and the standing water was deeper than 7cm, the effect tended to decrease. However, there was no difference in the weeding effect between soil types. Downward movement of perfluidone in flooded soil ranged from 2 to 8cm deep. The movement increased with increasing the leaching amount of water and the application rate and at a sandy loam soil which possessed less adsorptive capacity. Residual effect of perfluidone was found at 35 to 80 days after application, which varied such factors as Soil types. Increase in the leaching amount of water resulted in decrease in the period of the residual effect. The period was shorter at non-sterilized soil than at sterilized soil. The 0.75kg ai perfluidone + 1.5kg ai SL-49 (1,3-dimethyl-6-(2,4-dichlor-benzoyl)-5-phenacyloxy-pyrazole)/ha and 1.5kg ai perfluidone + 1.05kg ai bifenox (2,4-dichlorophenyl-3-methoxy carbonyl-4-nitro phenyl ether)/ha showed less crop injury than 1.5kg ai/ha perfluidone alone. However, the weeding effect of the former was similar to that of the later.

  • PDF

Effects of Mixture and Systematic Application of Herbicides on Weed Control and Yield in Transplanted Rice (이앙답(移秧畓)에서 제초제(除草劑)의 혼합(混合), 조합처리(組合處理)가 제초효과(除草效果) 및 벼 수량(收量)에 미치는 영향)

  • Kim, J.K.;Ku, Y.C.;Lee, J.H.
    • Korean Journal of Weed Science
    • /
    • v.2 no.1
    • /
    • pp.20-30
    • /
    • 1982
  • A field experiment was conducted in 1981 at the Crop Experiment Station, Suweon, Korea, in machine transplanted paddy rice field, to study the effectiveness of single herbicide, mixture, and systematic application of herbicides on diversity of weed control spectrum. The rice variety planted was Taebaegbyeo, Indica ${\times}$ Japonica cross bred. Experimental field was dominated by Echinochtoa crusgalli, Eleocharis kuroguwai, and Scirpus hotarui, and importance values based on dry weight of these weeds were 89%, 5%, and 3%, respectively. The mixture or systematic treatments of herbicide were generally more effective than single herbicide applications on weed control. Coefficients of similarity based on floristic composition after herbicide application between Perfluidone (5G) and Chloromethoxynil (7G), and between Pertluidone (5G) and Bifenox (7G), and between Perfluidone (5G) and three types of Butachlor (6G) were low, and these sets seemed to be a good mixture herbicide in paddy fields. While, Perfluidone (5G) had low coefficient of similarity with other single herbicides tested. The information on coefficient of similarity could be used as parameter for selecting herbicides to increase the efficiency of herbicidal performance. Simpson's indices from Butachlor (3.5G)/SL-49 (7G), Butachlor (3.5G)/Pyrazolate (6G), and Perfluidone (5G) treatments were high, and these herbicide treatments tended to the weed community type simplified, while the indices from Perfluidone (5G) + Chloromethoxynil (7G), Butachlor (6G) fb Perftuidone (5G), and Butachlor (4G)/Naproanilide (6G) treatments were low, and these herbicide treatments caused to the community type diversified in terms of floristic composition.

  • PDF

Study on the Behaviour of Mixtures of Herbicides in Transplanted Lowland Rice Field (논잡초방제용(雜草防除用) 제초제(除草劑)의 혼합효과(混合效果)에 관한 연구(硏究))

  • Kim, S.C.;Choi, C.D.;Lee, S.K.
    • Korean Journal of Weed Science
    • /
    • v.3 no.1
    • /
    • pp.69-74
    • /
    • 1983
  • The behaviour of mixtures of herbicides was determined to obtain the basic informations about effective herbicide use, enhancing herbicidal efficacy and reducing the chemical cost. Fourteen herbicides with 91 mixed combinations were evaluated by Limpel et al method at the Echinochloa crus galli Beauv-Monochuria vaginalis Presl.-Scirpus hotarui Ohwi (importance values of these weeds were 63%, 16% and 10%, respectively) community type. Thirty eight mixed combinations showed the antagonistic response. Among these 14 mixed combinations including chlormethoxynil + naproanilide mixture were greater than 11% in antagonistic effect. On the other hand, 40 mixed combinations including chlormethoxynil + SW751 mixture showed additive response (${\pm}2%$). For synergistic response, 13 mixed combinations were belonged to this group. Particularly, 3 mixed combinations, chlormethoxynil + butachlor, chlormethoxynil + bifenox and nitrofen + ACN/MCPB/nitrofen mixtures were greater than 11% in synergistic effects. The mixture of thiobencarb + oxyfluorfen was analyzed by isobole technique. This mixture showed the synergistic response and the interaction index was approximately 2. The most optimum mixtur for inducing 90%n weed suppression was 0.012 kg ai/ha for oxyfluorfen and 0.45 kg ai/ha for thiobencarb.

  • PDF

Studies on the Herbicidal Properties of Pyrazolate (제초제(除草劑) Pyrazolate의 작용특성(作用特性)에 관한 연구(硏究))

  • Ryang, H.S.;Han, S.S.;Kim, K.H.
    • Korean Journal of Weed Science
    • /
    • v.3 no.2
    • /
    • pp.174-189
    • /
    • 1983
  • Experiments were conducted to evaluate the herbicidal characteristics of pyrazolate [4-(2,4-dichloro benzoyl)-1,3-dimethylpyrazol-5-yl-p-toluene-sulphonate] in greenhouse and lowland rice field. Pyrazolate controlled effectively most of annual weeds and such perennial weeds as Sagittaria pygmaea MIQ., Potamogeton distinctus A. BENN, Sagittaria trifolia L., Cyperus serotinus ROTTB, and Scirpus hotarui OHWI., whereas Eleocharis kuroguwai OHWI. was tolerent to pyrazolate. Although pyrazolate was applied at 2 to 10 days after transplanting, there was no difference in weed control The weeding effect was not influenced by percolation, depth of water and soil type. No difference in crop injury of rice was found with various levels of seedling age, transplanting depth, percolation, depth of water, soil type and time of application. When combined with butachlor, the mixture gave the same effect on rice phytotoxicity and weed control as pyrazolate alone did. Pyrazolate moved 1 to 2cm downward in lowland soil regardless of soil type and percolation. The herbicidal activity of pyrazolate persisted in soil for 60 to 90 days, depending on soil type, percolation and presence of soil microorganism.

  • PDF

Herbicidal Efficacy of Newly Developed Several Herbicides in Rice (최근(最近) 개발(開發)된 수도용(水稻用) 제초제(除草劑)의 작용성(作用性)과 제초효과(除草效果))

  • Kim, S.C.;Lee, S.K.;Kim, D.S.
    • Korean Journal of Weed Science
    • /
    • v.7 no.2
    • /
    • pp.208-219
    • /
    • 1987
  • Newly developed several herbicides were evaluated as paddy rice herbicide at the Yeongnam Crop Experiment in 1986. And also, the general situation of rice cultivation between Korea and Japan was compared. Twenty-nine herbicides of the total 59 herbicides were used as paddy rice field in Korea while these were 100 and 187, respectively, in Japan. Among paddy rice herbicides, butachlor was the most important herbicide in both countries. However, the degree of concentration to a particular herbicide was greater in Korea compared to Japan; consumption rate of single butachlor to the total herbicide were 66.5% for Korea and 11.9%r for Japan, respectively. Pyrazolate, pyrazoxyfen and quinclorac were the most promising hebicides in pressed-type rice nurserybed in terms of herbicidal efficacy and phytotoxic effect. For transplanted paddy rice field, single application of NC-311 or combining applications of NC-311 with butachlor or quinclorac gave excellent results at the weed community that was dominated by Echinochloa crus-galli, Aneilema japonica, Ludwigia prostrata, Scirpus hotarui, Cyperus serotinus, Potamogeton distinctus and Eleocharis kuroguwai. Particularly the above combining applications maintained their excellent herbicidal effect up to 3 leaf stage of E. crus-galli without arising herbicidal phytotoxicity. Pyrazolate and three sulfonyl urea herbicides (DPX-5384, NC-311 and CGA 142464) exhibited very high safety against rice. However, Japonica type rice cultivar was a little bit more sensitive than Indica/Japonica type rice cultivar. On the other hand, the effect of these herbicides against E. crus-galli was very strong. Herbicidal effect against E. crus-galli was enhanced through shoot absorption for sulfonyl urea herbicides and root abosorption for pyrazolate and quinclorac, respectively.

  • PDF

Survey of Weed Population Distribution and Change of Dominant Weed Species on Paddy Field in Kyonggi Area (경기지역(京畿地域)의 논 잡초(雜草) 분포(分布) 및 군락변화(群落變化)에 관(關)한 연구(硏究))

  • Kim, H.D.;Park, J.S.;Su, K.K.;Moon, M.H.;Jo, Y.C.;Park, K.Y.;Choi, Y.J.;Yu, C.J.;Shim, S.W.;Rho, Y.D.
    • Korean Journal of Weed Science
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 1997
  • The survey of weed community in paddy field was carried out to investigate the changes of weed species on 340 fields in Kyonggi Area in 1995, that is almost same condition as sampled in 1991. The weed species observed include 3 species of grasses, 5 species of sedges and 14 species of broadleaf and other weed. Herbicide treatment system in one time treatment vs more than two time treatment was 34:66 percentage. About 25 percentage among one time treatment system was used butachlor G. Ratio of annual weed vs perennial weed was 38:62, and then perennial weed ratio was high. Major dominant weed species were Sagitaria trifolia, Eleocharis kuroguwai, Echinochloa crus-galli, Bidens tripartita and Monochoria vaginalis. Weed occurrence was decreased as order of normal soil, poorly drained soil and saline soil. Dormant weed species were S. trifolia, E. kuroguwai, E. crus-galli and B. tripartita in normal soil and were S. trifolia, E. kuroguwai, E. crus-galli and Polygonium hydropiper in poorly drained soil, and were Scirpus planiculmis, S. trifolia and E. kuroguwai in saline soil. Weed occurrence was increased with delaying the transplanting time; dominant weed species were S. trifolia, E. kuroguwai, E. crus-galli and M. vaginalis in May transplanting field and were E. kuroguwai, S. trifolia, and C. serotinus in June transplanting field. Weed occurrence was decreased as order of non-plowing transplanting field, autumn plowing and spring plowing paddy field. Dominant weed species were S. trifolia, E. kuroguwai, E. crus-galli and M. vaginalis in autumn plowing, were S. trifolia, E. kuroguwai, E. crus-galli and B. tripartita in spring plowing, and were E. crus-galli, S. hotarui and S. trifolia in non-plowing transplanting field.

  • PDF