• Title/Summary/Keyword: Scientific process

Search Result 1,721, Processing Time 0.022 seconds

Coherent Diffraction Imaging at PAL-XFEL

  • Kim, Sangsoo;Nam, Kihyun;Park, Jaehyun;Kim, Kwangoo;Kim, Bongsoo;Ko, Insoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.85.2-85.2
    • /
    • 2016
  • With the advent of ultra-short high-intense XFEL (X-ray Free Electron Laser), time-resolved dynamics has become of great importance in exploring femtosecond real-world phenomena of nanoscience and biology. These include studying the response of materials to femtosecond laser excitation and investigating the interaction of XFEL itself with condensed matter. A variety of dynamic phenomena have been investigated such as radiation damage, ultrafast melting process, non-equilibrium phase transitions caused by orbital-lattice-spin couplings. As far as bulk materials are concerned, the sample size has no effect on the following dynamic process. As a result, imaging information is not required by and large. If the sample size is of tens of nanometers, however, sample starts to experience quantum confinement effect which, in turn, affects the following dynamic process. Therefore, to understand the fundamental dynamic phenomena in nano-science, time-resolved imaging information is essential. In this talk, we will briefly introduce scientific highlights achieved in XFEL-based dynamics. In case of bio-imaging, recent scientific topics will be mentioned as well. Finally, we will aim to present feasible topics in ultrafast time-resolved imaging and to discuss the future plan of CXI beamline at PAL-XFEL.

  • PDF

The Effect of Learning Cycle Model in Solution Concept on the Cognitive Development for Primary Student (용액 개념의 순환학습이 초등학생의 인지수준발달에 미치는 영향)

  • 최영주;김세경;고영신
    • Journal of Korean Elementary Science Education
    • /
    • v.23 no.4
    • /
    • pp.273-278
    • /
    • 2004
  • According to Piaget, children aged 11 are in the middle of concrete operation period and formal operation period. So, it is necessary to adopt the Learning Cycle Model (LCM) which helps students improve their cognitive development. After determining the test for the Science Concept of Matter (SCOM), the experimental group showed higher average than the comparative group in the post-test. In the sound understanding, the experimental group showed higher ratio than the comparative group. And in the ratio of imperfect, wrong understanding and no response, the experimental group was lower than the comparative group. On the questions that were needed the complicated inquiry, many students of both groups still couldn't find the fundamental cause. In forming the scientific conceptualization, there was a meaningful difference (p < .001) after post-test Analysis of Covariance (ANCOVA) with pre-test result. After determining the test for the Test Inquiry Science Process (TISP), the experimental group showed higher average than the comparative group in the post-test. In the category of basic inquiry process which is needed in concrete operation, there was a meaningful difference (p < .05). In the category of unified inquiry process which is needed in formal operation, they showed no meaningful difference (p > .05). Therefore, applying the LCM to the chapter of 'Solution and Dissolving' is more effective on improving the scientific conceptualization and on helping the concrete operation abilities than the teacher centered learning.

  • PDF

The Development and Application Effects of STEAM Program about 'World of Small Organisms' Unit in Elementary Science (초등과학 '작은 생물의 세계' 단원에 대한 STEAM 프로그램 개발 및 적용 효과)

  • Choi, Youngmi;Hong, Seung-Ho
    • Journal of Korean Elementary Science Education
    • /
    • v.32 no.3
    • /
    • pp.361-377
    • /
    • 2013
  • The purposes of this study were to develop STEAM teaching materials about 'world of small organisms' unit on elementary science education and to apply lesson using them for the 5th and 6th graders. Compared to other STEAM programs studied previously, the STEAM teaching materials of this study includes students' STEAM, teachers' guide, story-telling books and multimedia teaching aids consisted of practical resources to manage STEAM lessons. The whole program was designed from multidisciplinary integration to extradisciplinary integration through activities making creative products, meanwhile each period had discretionary S, T, E, A, M factors specifically. To examine the effects of integrated lesson on scientific knowledge, process skills, and affective domain, the study subjects were divided into two groups. The experimental group was composed of 69 individuals participated in STEAM lesson, while students of the control group were 67 individuals learned through general learning methods. The developed STEAM teaching materials affected significantly on scientific knowledge and affective domain of elementary school students, but process skills were not increased significantly. In the present study, therefore, the approach applying STEAM education could be suggested as alternative learning materials or supplementary teaching materials at the field of small organisms in elementary science sufficiently.

The Effects of the Lab Practices Using Robot on Science Process Skills in the Elementary (초등학교에서 로봇활용실험이 과학탐구능력에 미치는 효과)

  • Kim, Chul
    • Journal of The Korean Association of Information Education
    • /
    • v.15 no.4
    • /
    • pp.625-634
    • /
    • 2011
  • This research examines educational effects on students' scientific process skills after applying a robot utilized MBL learning. Surveys and interviews concerning robot based science lessons were also conducted. The students were divided into experiment group who used the robots and controlled group who used traditional learning method with textbook and experiments. The result showed some significant differences in scientific measurement, prediction and inference(<.05). In contrast, no significant differences were found in observation and classification. The students answered the survey that the robots helped them understand science better and made science lessons more interesting.

  • PDF

Consultation Program for Pharmaceutical Development-Lessons from Foreign Countries' Experiences (주요국의 의약품 사전상담제도 현황과 정책적 함의)

  • Park, Syl-Vi-A;Park, Eun-Ja;Han, Hyun-Jin
    • YAKHAK HOEJI
    • /
    • v.52 no.2
    • /
    • pp.151-159
    • /
    • 2008
  • Consultation program for pharmaceutical development is a new system in which pharmaceutical companies meet and discuss scientific and/or regulatory issues with drug regulatory authority in the research process and before submitting new drug applications. This program helps pharmaceutical companies reduce uncertainties in the research and development and increase the possibilities of getting drug marketing approval. Developed countries such as US, EU, and Japan have implemented various forms of pre-submission meetings or consultation programs since the mid-1990s. The rapid development of technology in pharmaceutical R&D increases the importance of communication between drug development companies and drug regulatory authority in Korea, too. In designing the consultation program, it is desirable to focus on the stages of clinical trials which take the longest period of time and the biggest amount of money in the pharmaceutical R&D process. We suggested that results or recommendations by drug regulatory authorities in pre-submission meetings or consultations be formally documented and considered in review process. Explicit scientific reasons are required for changing the results from consultations.

Analysis of Representations in the Problem-Solving Process: The ACODESA (Collaborative Learning, Scientific Debate and Self Reflection) Method (ACODESA(Collaborative Learning, Scientific Debate and Self Reflection) 방법을 적용한 문제해결 과정에서 나타난 표상의 분석)

  • Kang, Young Ran;Cho, Cheong Soo
    • Education of Primary School Mathematics
    • /
    • v.18 no.3
    • /
    • pp.203-216
    • /
    • 2015
  • This study analyzed changes of representations which had come up in the problem-solving process of math-gifted 6th grade students that ACODESA had been applied. The class was designed on a ACODESA procedure that enhancing the use of varied representations, and conducted for 40minutes, 4 times over the period. The recorded videos and interviews with the students were transcribed for analysing data. According to the result of the analysis, which adopted Despina's using type of representation, there appeared types of 'adding', 'elaborating', and 'reducing'. This study found that there is need for a class design that can make personal representations into that of public through small group discussions and confirmation in the problem-solving process.

The Chinese Black Box - A Scientific Model of Traditional Chinese Medicine

  • Theodorou, Matthias;Fleckenstein, Johannes
    • Journal of Acupuncture Research
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • Models of traditional Chinese medicine (TCM) are still difficult to grasp from the view of a Western-cultural background. For proper integration into science and clinical research, it is vital to think "out of the box" of classical sciences. Modern sciences, such as quantum physics, system theory, and information theory offer new models, that reveal TCM as a method to process information. For this purpose, we apply concepts of information theory to propose a "Chinese black box model," that allows for a non-deterministic, bottom-up approach. Considering a patient as an undeterminable complex system, the process of getting information about an individual in Chinese diagnostics is compared to the input-process-output principle of information theory and quantum physics, which is further illustrated by Wheeler's "surprise 20 questions." In TCM, an observer uses a decision-making algorithm to qualify diagnostic information by the binary polarities of "yang" (latin activity) and "yin" (latin structivity) according to the so called "8 principles" (latin 8 guiding criteria). A systematic reconstruction of ancient Chinese terms and concepts illuminates a scattered scientific method, which is specified in a medical context by Latin terminology of the sinologist Porkert [definitions of the Latin terms are presented in Porkert's appendix [1] (cf. Limitations)].

Brain Activation Pattern and Functional Connectivity Network during Experimental Design on the Biological Phenomena

  • Lee, Il-Sun;Lee, Jun-Ki;Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.3
    • /
    • pp.348-358
    • /
    • 2009
  • The purpose of this study was to investigate brain activation pattern and functional connectivity network during experimental design on the biological phenomena. Twenty six right-handed healthy science teachers volunteered to be in the present study. To investigate participants' brain activities during the tasks, 3.0T fMRI system with the block experimental-design was used to measure BOLD signals of their brain and SPM2 software package was applied to analyze the acquired initial image data from the fMRI system. According to the analyzed data, superior, middle and inferior frontal gyrus, superior and inferior parietal lobule, fusiform gyrus, lingual gyrus, and bilateral cerebellum were significantly activated during participants' carrying-out experimental design. The network model was consisting of six nodes (ROIs) and its six connections. These results suggested the notion that the activation and connections of these regions mean that experimental design process couldn't succeed just a memory retrieval process. These results enable the scientific experimental design process to be examined from the cognitive neuroscience perspective, and may be used as a basis for developing a teaching-learning program for scientific experimental design such as brain-based science education curriculum.

Analysis of Scientific Inquiry Activities in the Astronomy Section of School Science Textbooks (과학 교과서 천문 단원의 탐구 활동 분석)

  • Kim, Kyoung-Mi;Park, Young-Shin;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.29 no.2
    • /
    • pp.204-217
    • /
    • 2008
  • This study analyzed the inquiry activities appearing in the astronomy sections of elementary, middle and highschool level science textbooks according to the five essential features of inquiry in the classroom as proposed by the National Science Education Standards (NRC, 2000), and SAPA (Science-A Process Approach). On the basis of this analysis, it is clear that the science textbook inquiry activities released the limitation to meet the goal of science education, namely scientific literacy, as it has been laid out by the 7th Science Educational Curriculum. This study revealed that the features of scientific inquiry which are most frequently used in the astronomy sections of science textbooks are 'data collection' and 'form explanation', whereas the features of 'oriented-question', 'evaluate explanations' and 'communicate and justify' rarely appeared. The analysis of inquiry activities by SAPA showed that the basic inquiry skills of 'observing', 'communicating' and 'manipulating materials' were used with increasing frequency according to grade level, and the integrated skills of 'investigating', 'creating models', 'interpreting data' and 'experimenting' were more emphasized in the textbooks. Therefore, it is suggested that students be provided with more opportunities to experience all the features of scientific inquiry and scientific processes as envisioned by the 7th Science Educational Curriculum in order to achieve the stated goal of scientific literacy. Science educators should be required to develop new lesson modules which will allow students to experience authentic scientific inquiry. It is crucial for science teachers to reflect upon and develop their understanding and teaching strategies regarding scientific inquiry through professional development programs in teacher education.

The Roles of Science Classroom Activities and Students' Learning Motivation in Achieving Scientific Competencies: A Test of Path Model (고등학생들의 과학적 역량에 있어서 과학수업 활동과 학습동기의 역할 -경로모형의 검증-)

  • Lim, Hyo Jin;Chang, Jina;Song, Jinwoong
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.3
    • /
    • pp.407-417
    • /
    • 2018
  • The purpose of this study is to analyze the roles of classroom activities in science lessons and student learning motivation in achieving students' scientific competencies, and to suggest implications for science lessons to develop scientific competencies. For this, based on the PISA 2015 data of Korean high school students, we analyzed how classroom activities in science influenced students' scientific competencies through learning motivation variables. As a result of the path analysis, the activities emphasizing interaction and a link to real life predicted intrinsic motivation, instrumental motivation, and science efficacy significantly. On the other hand, the activities that emphasize the student-led inquiry process did not show any effect on learning motivation. In addition, the higher the motivation to learn the science, the higher their scores in three scientific competencies: explaining phenomenon scientifically, evaluating and designing scientific inquiry, and interpreting data and evidence scientifically. The practices of school science lessons indirectly influenced the achievement of scientific competence through learning motivation. Specifically, the activities emphasizing interaction influenced achieving scientific competencies through intrinsic motivation, and the activities emphasizing linkage to real life influenced it through all learning motivation variables. Finally, we discussed some implications for the roles and practices of school science class for enhancing students' scientific competencies.