• Title/Summary/Keyword: Scientific Problem Solving Ability

Search Result 110, Processing Time 0.022 seconds

A study on the method for distinguishing general from science-inclined learners by using Pattern Recognition (패턴인식을 이용한 과학영재 판별 도구에 관한 연구)

  • Bang, Seung-Jin;Choi, Jung-Oh;Kim, Hyouk
    • Communications of Mathematical Education
    • /
    • v.20 no.4 s.28
    • /
    • pp.551-559
    • /
    • 2006
  • Pattern Recognition measures the ability of learners to distinguish between two sets of shapes or figures. Locating similar patterns on either side of the presented problem determines a learner's capacity or aptitude for science over general studies. At Ajou University's Institute for Scientifically Enabled Youth, we conducted research using a sample composed of middle school students with general and scientific backgrounds. The result proved that Pattern Recognition measures a different creative talent other than problem solving. In our opinion, Pattern Recognition would be a method better suited to elementary learners over those in middle or high school.

  • PDF

Development of Neuropsychological Model for Spatial Ability and Application to Light & Shadow Problem Solving Process (공간능력에 대한 신경과학적 모델 개발 및 빛과 그림자 문제 해결 과정에의 적용)

  • Shin, Jung-Yun;Yang, Il-Ho;Park, Sang-woo
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.5
    • /
    • pp.371-390
    • /
    • 2021
  • The purpose of this study is to develop a neuropsychological model for the spatial ability factor and to divide the brain active area involved in the light & shadow problem solving process into the domain-general ability and the domain-specific ability based on the neuropsychological model. Twenty-four male college students participated in the study to measure the synchronized eye movement and electroencephalograms (EEG) while they performed the spatial ability test and the light & shadow tasks. Neuropsychological model for the spatial ability factor and light & shadow problem solving process was developed by integrating the measurements of the participants' eye movements, brain activity areas, and the interview findings regarding their thoughts and strategies. The results of this study are as follows; first, the spatial visualization and mental rotation factors mainly required activation of the parietal lobe, and the spatial orientation factor required activation of the frontal lobe. Second, in the light & shadow problem solving process, participants use both their spatial ability as a domain-general thought, and the application of scientific principles as a domain-specific thought. The brain activity patterns resulting from a participants' inferring the shadow by parallel light source and inferring the shadow when the direction of the light changed were similar to the neuropsychological model for the spatial visualization factor. The brain activity pattern from inferring an object from its shadow by light from multiple directions was similar to the neuropsychological model for the spatial orientation factor. The brain activity pattern from inferring a shadow with a point source of light was similar to the neuropsychological model for the spatial visualization factor. In addition, when solving the light & shadow tasks, the brain's middle temporal gyrus, precentral gyrus, inferior frontal gyrus, middle frontal gyrus were additionally activated, which are responsible for deductive reasoning, working memory, and planning for action.

A Study on the Inquiring Experimental Assessment in Biology of Applicants for Entrance Examination to A Korean Private High School (고등학교 장학생 선발고사 응시생의 탐구적 생물실험 평가에 관한 연구)

  • Hong, Jung-Lim;Pak, Sung-Jae;Chang, Nam-Kee
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.2
    • /
    • pp.201-207
    • /
    • 1997
  • This study was performed to survey the achievements in problem solving by the inquiring experiment, which was done by the superior group in the traditional cocepts-centered written tests. The purpose of this study was to identify characteristics of inquiring experimental assessment by analyzing differences between concepts-centered written and inquiring experimental tests. The subjects of this study was 211 applicants. They are the superior group of the 9th grade students, and score in the top 1% of total achievements percentage in school. They also have passed the primary entrance examination. The inquiring experimental test was developed according to the curriculum in school, and is composed of 5 subcategories: problem-perception and formulating hypothesis, designing an experiment, carring out an experiment, recording data and drawing conculsion, and generalizing conculsions and communicaton. The checklists of each subcategory were made and testing methods were divided into observation and report. The major results of this study are as follows: 1. The achievements in each subcategory of inquiring experimental performance were very low in the superior group who took the concepts-centered written tests. 2. The results of factor and correlation analyses in this study confirmed the abilities measured by inquiring experimental assessment differed from abilities measured by existing tests. These results indicated that even students who achieved high in scientific knowledge, these abilities were not automatically transformed inquiry process which many other abilities were integrated into. Therefore, problem solving ability requires integrated abilities which are fostered by inquiring experimental tasks. This suggests that new instrument for assessment must be developed to measure integrating ability especially where scientifically gifted students are selected, or where entrance examinations to the science schools are administered.

  • PDF

Development And Application of CNP Model for the Enhancing Creativity of Scientifically Gifted Students (과학영재의 창의성 신장을 위한 CNP 모형의 개발과 적용)

  • Hwang, Yo-Han;Park, Jong-Seok
    • Journal of Gifted/Talented Education
    • /
    • v.20 no.3
    • /
    • pp.847-866
    • /
    • 2010
  • Enhancing creativity is possible to offer systematic education programs and several conditions as variable thinking, experiment lesson, opened-situation. We developed CNP model as program for enhancing creativity. The CNP model emphasizes that parts of problem finding, embodying and solving ability and includes scientific problem finding tool, Integrated Process Skills and Science Writing Heuristic. The CNP Model is comprised of six step. We developed teachers' guide and student's worksheets for application. Result of applied CNP model to students of scientifically gifted education center in K University, students were able to enhanced originality and fluency and had solved problems by creative way. And creative problem finding, embodying and solving ability were increased. Therefore, the CNP model was effective in enhancing the creativity of scientifically gifted.

The Effect of Students' Science Club Activities on Science - Related Attitude (과학 동아리 활동이 학생의 과학과 관련된 태도에 미치는 영향)

  • Cho, Kyu-Seong;Kang, Cheul-Hyung
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.279-286
    • /
    • 2005
  • This thesis aims to know about the effect science club activities have on the students' science-related attitude. The subjects are 551 high-school students who consists of the students who participate in science club activities and students who don't participate in science club activities. The questionnaires include the questions about cognition of science, interests toward science, and scientific attitudes which belong to the affective domain of Science. The answers are analyzed using by SPSS 11.5 program. This survey shows that whether or not students participate in science club activities affects the cognition of science, the interests toward science, and the scientific attitudes. In other words, science club activities affirmatively enhance the cognition of science, cultivate the thinking power about science, enlarge problem-solving ability by knowing how to survey natural phenomenon, increase the insight into science and help to cope with technological changes. Therefore, since science club activities affect the cognition of science, the interest toward science, and the scientific attitudes in the affective domain of Science, much consideration and concern should be given to science club activities so that students can cherish science club activities and deal with club activities with more attention.

  • PDF

Development and Effectiveness of Learning Programs on Visualization of Data for Gifted Students in Elementary School Science - Focusing on Using the Tableau Program - (초등학교 과학영재 학생을 대상으로 한 데이터 시각화 학습 프로그램 개발 및 효과 - Tableau 프로그램 활용을 중심으로 -)

  • Kim, Hyunguk
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.1
    • /
    • pp.18-34
    • /
    • 2024
  • This study aimed to examine the effects of a science-learning program based on data visualization on the science inquiry and creative problem-solving abilities of elementary school science-gifted students. Accordingly, this research developed a data visualization science-learning program using Tableau, which had twelve sessions. The subjects encompassed 61 students in three gifted classes taught by the researcher. The scientific inquiry ability test and creative problem-solving ability test modified to suit the environment and situation were given to the subjects before and after the treatment. The results confirmed that science learning based on data visualization had no significant impact on basic science inquiry skills. Among the subdomains, significant results were obtained only in the reasoning subdomain. Moreover, integrative inquiry ability was significantly affected, unlike basic inquiry abilities. Among the five subdomains, significant differences were observed in three subdomains (data conversion, data interpretation, and variable control). However, concerning the generation of hypotheses and the control of variables, students exhibited confusion regarding the process of variable control and the exact concept of hypothesis development. This study also evaluated the effects of the program's application on creative problem-solving abilities and found a significant impact. Additionally, it was significantly different in all four subdomains. The results were interpreted to be owing to the students' mastery of Tableau's features, collaborative learning through discussion and debate, and the thematic impact of the data visualization program emphasizing procedural thinking. Finally, this study presented implications for science learning based on data visualization and the future direction of education.

Teaching-Learning Method and Evaluating Method on Free Inquiry (자유탐구에서 교수.학습 방법 및 평가 방안)

  • Kim, Yong-Gwon
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.3 no.3
    • /
    • pp.163-174
    • /
    • 2010
  • The purpose of this study is to device the teaching-learning method and the evaluating method on 'free inquiry' which is newly introduced in 2007 revised curriculum. The teaching-learning models which apply 'free inquiry' are 'group investigation', 'PBL', 'project investigation' and 'IIM'. And the unit which apply 'free inquiry' on the fourth grade and the second semester in the elementary science. The results of this study are as follows: First, The person leading the lesson is not a teacher but learners. The focus of teaching-learning is not a unit but topic, problem or project on the science textbook. A teacher's role is not the deliverer of knowledge but the guide of learning. Second, the outcome of applying group investigation, PBL project investigation and IIM to 'free inquiry' is improvements of the problem-solving ability and the self-directed learning ability as well as building scientific attitude and social skills as educational effect in commonly. Third, to apply 'free inquiry' efficiently, teachers should understand each subject very well, teach a class with a thorough and concrete plan, and try to evaluate objectively.

  • PDF

Effects of e-PBL Program Using COVID-19 Related Data on Science Core Competence of High School Students in Biology Clubs (코로나19에 관한 데이터 활용 e-PBL 프로그램이 고등학교 생명과학 동아리 학생의 과학과 핵심역량에 미치는 효과)

  • Gill Woo Shin;Heeyoung Cha;Jisu Park
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.6
    • /
    • pp.583-594
    • /
    • 2023
  • This study aimed to develop an e-PBL program for high school students using COVID-19 related data and to investigate the impact of the developed program on students' science core competencies. For this, the e-PBL program was developed in consideration of the characteristics of learners and e-PBL, and a science core competency analysis framework. The program was applied to 26 general high school life science club students. Test for science department core competency was conducted before and after class by questionnaires and their conversation data during class was collected and analyzed by the framework. As a result of the study, the developed program was effective in improving five science core competencies. In the results of the analysis of the science core competency questionnaire, there were significant effects on scientific thinking ability, scientific inquiry ability and scientific problem solving ability. Unlike in the results of the questionnaires, the five sciences department core competencies appeared evenly in student discourse analysis. Among them, scientific communication ability and scientific participation and lifelong learning ability did not show significant results in the questionnaire, but in the discourse analysis results. Both abilities were the most evenly displayed competencies through the program stages. Through the study, we expect that the program is possibles to be useful instructional material to make high school students increase science core competencies.

Effects of Artistic and Technological Context on Physics Problem Solving for High School Students (예술적 상황과 기술적 상황이 고등학생들의 물리 문제해결에 미치는 효과)

  • Lee, Sua;Park, Yunebae
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.6
    • /
    • pp.985-995
    • /
    • 2015
  • This study examines the effects of the introduction of artistic and technological factors on science problems for the activation of creative and integrated thinking. We developed problems consisting of STA(problems that introduced technological and artistic factors on the College Scholastic Ability Test) and TA(problems that introduced artistic factors in a technological context). Subjects of the study included 60 high school senior students in Daegu. Their problem solving processes for STA were examined. Four students were interviewed using the retrospective interview method. Also, after finishing TA, the problem solving processes of four students were examined. The results of the study are as follows. First, students selected scientific context more than artistic and technological contexts. It was found that students preferred short length problem in order to solve problems in a short time. Second, students were more interested in artistic and technological contexts of STA than scientific context, but felt that they were more difficult. Moreover, students were more interested about the context of TA than scientific context. Third, irrespective of the given contexts in STA, students have a tendency to solve problems through relatively brief ways by using core scientific knowledge. This can seem to mean that there is a possibility to stereotype the problem solving process through repeated learning. Logical thinking and elaboration were observed, but creativity was not conspicuous. In addition, integrated thinking was not observed in all contexts of STA. Fourth, science related problems of TA showed similar results. However, in problems related to everyday life, students made original descriptions that they based on their daily lives. Particularly, in creative design, original ideas and integrated thinking were observed.

A Study to Train Student with Interdisciplinary Abilities through THAMS Clinic Camp (THAMS Clinic Camp 운영을 통한 융합인재 양성 방안 연구)

  • Jun, Young-sun;Seo, Taewon
    • Journal of Engineering Education Research
    • /
    • v.18 no.6
    • /
    • pp.80-87
    • /
    • 2015
  • The aim of this study suggest the THAMS Clinic Camp program to train the interdisciplinary students with humanistic knowledge as well as the skills to perform the scientific and engineering works. Since the future of society is required students with the ability to elicit an emotional empathy, THAMS Clinic Camp program has been planed and performed from year 2012 based on the comprehensive liberal learning. The average employment rate over the past three years of the students who participated in THAMS Clinic Camp program showed 7% better than the overall average employment rate of Andong National University. The another visible educational outcomes of the THAMS Clinic Camp program are following; i) To take place the conversion of recognition for the interdisciplinary activity by breaking down the walls between fragmented disciplines to students and ii) To provide the opportunity that students will understand the past and refocus the current to have the idea to plan for the future in the right direction.