• Title/Summary/Keyword: Scientific Computing

Search Result 182, Processing Time 0.026 seconds

Multi-resolution Representation of 2D Point Data (2차원 점 데이터의 다중해상도 표현)

  • Yun, Seong-Min;Lee, Mun-Bae;Park, Sang-Hun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.7
    • /
    • pp.768-774
    • /
    • 2010
  • Reconstruction of implicit surfaces from scattered point data sets have been developed in various engineering and scientific studies. In this paper, we represent a method to construct functions of 2D point data using multi-scale kernels and show it can be applied to graphics applications needed to access data in real-time. Our approach is similar to previous work in that a set of coefficients of the functions are calculated and stored in the preprocessing stage and function values at arbitrary positions are evaluated for real-time applications, however, it is different from others in that users can choose detail levels freely in real-time processing stage. The reason why the functions implicitly supports multi-resolution results from the mathematical properties of multi-scale kernels, and proposed method can be expanded to represent multi-resolution functions of n-dimensional data.

Hardware-Accelerated Multipipe Parallel Rendering of Large Data Streams

  • Park, Sanghun;Park, Sangmin;Bajaj, Chandrajit;Ihm, Insung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.7 no.2
    • /
    • pp.21-28
    • /
    • 2001
  • As a result of the recent explosive growth of scientific data, extremely large volume datasets have become increasingly commonplace. While several texture-based volume rendering algorithms have been proposed, most of them focused on volumes smaller than the hardware's available texture memory. This paper presents a new parallel volume rendering scheme for very large static and time-varying data on a multipipe system architecture. Our scheme subdivides large volumes dynamically into smaller bricks, and assigns them adaptively to graphics pipes to minimize the costs of texture swapping. With the new method, Phong shaded images can be easily created by computing the gradients on the fly and using the color matrix feature of OpenGL. We report experimental results on an SGI Onyx2 for the various large datasets.

  • PDF

A Study on the Analysis of Information Management of the Defense M&S and Improvement of Aquisition Supporting System (국방M&S 정보관리 현황분석 및 획득업무 지원체계 개선방안 연구)

  • Jeong, Hye-soo;Ahn, Ho-il;Yang, Jin-seok
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.131-138
    • /
    • 2020
  • The SBA Integrated Information system is constructed and operated for scientific and systematic management of Defense information utilizing whole process of weapon system acquisition from requirement institution to operation maintenance. In order to utilize m&s resources actively and effectively in the life cycle of weapon system acquisition, efficient management plans of the SBA integrated Information system is required. As a result of identifying usage on SBA Information system and performance of operation performance measurement, it was defined that establishment of the SBA Integrated Information system process and provision of detailed system are mandatory for activating m&s resource and supporting process of acquisitions. In this study, Defense m&s information system is analyzed and improvement plans of SBA Integrated Information system is provided for efficient operation of SBA integrated Information system.

An Empirical Study on the Intention to Reuse Computational Science and Engineering Platforms: A Case Study of EDISON

  • On, Noori;Ryu, Gi-Myeong;Koh, Myoung-Ju;Lee, Jongsuk Ruth;Kim, Nam-Gyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3437-3456
    • /
    • 2020
  • The computational science and engineering field, which combines basic science and computing technology, has emerged as a third scientific methodology, following theories and experiments. This study aimed to identify factors and relationships that affect the continued use of the computational science and engineering (CSE) platform for its successful operation, utilization, and diffusion. To that end, the quality factors of the platform were derived by combining the information system success model and the technology acceptance model. These factors affected user satisfaction and intention to reuse through users' perceived usefulness and perceived ease of use of the platform. An empirical analysis was conducted through a questionnaire survey of 373 users of the EDISON platform, a representative CSE platform in Korea. The results revealed that all quality factors have a positive influence on perceived usefulness and perceived ease of use. Specifically, information quality has a significant influence on perceived ease of use, and system quality has a significant influence on perceived usefulness. Perceived ease of use has a greater impact on user satisfaction than perceived usefulness, and satisfaction affects intention to reuse. The results can contribute to the development of CSE platforms and the development strategy to expand the number of users.

Efficient Skyline Computation on Time-Interval Data Streams (유효시간 데이터 스트림에서의 스카이라인 질의 알고리즘)

  • Park, Nam-Hun;Chang, Joong-Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.370-381
    • /
    • 2012
  • Multi-criteria result extraction is crucial in many scientific applications that support real-time stream processing, such as habitat research and disaster monitoring. Skyline evaluation is computational intensive especially over continuous time-interval data streams where each object has its own customized expiration time. In this work, we propose TI-Sky - a continuous skyline evaluation framework. To ensure correctness, the result space needs to be continuously maintained as new objects arrive and older objects expire. TI-Sky strikes a perfect balance between the costs of continuously maintaining the result space and the costs of computing the final skyline result from this space whenever a pull-based user query is received. Our key principle is to incrementally maintain a partially precomputed skyline result space - however doing so efficiently by working at a higher level of abstraction. TI-Sky's algorithms for insertion, deletion, purging and result retrieval exploit both layers of granularity. Our experimental study demonstrates the superiority of TI-Sky over existing techniques to handle a wide variety of data sets.

ENF based Detection of Forgery and Falsification of Digital Files due to Quadratic Interpolation (이차 보간에 따른 ENF 기반의 위변조 디지털 파일 탐지 기법)

  • Park, Se Jin;Yoon, Ji Won
    • Journal of KIISE
    • /
    • v.45 no.3
    • /
    • pp.311-320
    • /
    • 2018
  • Recently, the use of digital audio and video as proof in criminal and all kinds of litigation is increasing, and scientific investigation using digital forensic technique is developing. With the development of computing and file editing technologies, anyone can simply manipulate video files, and the number of cases of manipulating digital data is increasing. As a result, the integrity of the evidence and the reliability of the evidence Is required. In this paper, we propose a technique for extracting the Electrical Network Frequency (ENF) through a grid of power grids according to the geographical environment for power supply, and then performing signal processing for peak detection using QIFFT. Through the detection algorithm using the standard deviation, it was confirmed that the video file was falsified with 73% accuracy and the forgery point was found.

Application of Parallel Processing System for free drop simulation of IT-related modules (IT 모듈의 자유 낙하 모사를 위한 병렬처리시스템의 적용)

  • Park Y.J.;Lee J.S.;Ko H.O.;Chang Y.S.;Choi J.B.;Kim Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.405-406
    • /
    • 2006
  • Recently, the flat display modules such as plasma or TFT-LCD employ thin crystallized panels which are normally weak to high level transient mechanical energy inputs. As a result, anti-shock performance is one of the most important design specifications for TFT-LCD modules. However, most of large display module designs are generated based on engineers own experiences. Also, a large-scale analysis to evaluate complex material and structural behaviors is one of interesting topic in diverse engineering and scientific fields. The utilization of massively parallel processors has also been a recent trend of high performance computing. The objective of this paper is to introduce a parallel process system which consists of general purpose finite element analysis solver as well as parallelized PC cluster. The parallel processing system is constructed using thirty-two processing elements and the finite element program is developed by adopting hierarchical domain decomposition method. In order to verify the efficiency of the established system, an impact analysis on thin and complex sub-parts of flat display modules is performed. The evaluation results showed a good agreement with the corresponding reference solutions, and thus, the parallel process system seems to be a useful tool fur the complex structural analysis such as IT related products.

  • PDF

Improved Function Point Measurement Model for Software Size Estimation (소프트웨어 규모 산정을 위한 개선된 기능 점수 측정 모델)

  • Jung, In-Yong;Woo, Doug-Je;Park, Jin-Hyeong;Jeong, Chang-Sung
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.115-126
    • /
    • 2009
  • A software size estimation has to be analyzed in the beginning of the software life-cycle and helpful to the prediction of its size and cost. The software cost has been calculated by estimating software size from the user's point of view since the function point method based on international standards was introduced for the estimation of software size in 2004. However, the current function point method is not easy to be exploited for unfamiliar user, and has a problem that it cannot estimate the proper size for software such as engineering software, scientific calculations and simulation with complicated internal computational logic. This paper presents an improved model which can simplify the existing function point measurement procedure, and perform the estimation of software size in easy and fast way at the initial stage of project. Moreover, it presents a mathematical weighted value calculation model which can solve the problem of the fixed complexity weighted value and reflect the characteristics of organization as its data is pilled up. Our evaluation shows that the presented model has advantage that it can measure the size more rapidly than the existing FPA methods and has more correlation with LOC.

  • PDF

A Trusted Sharing Model for Patient Records based on Permissioned Blockchain

  • Kim, Kyoung-jin;Hong, Seng-phil
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.75-84
    • /
    • 2017
  • As there has been growing interests in PHR-based personalized health management project, various institutions recently explore safe methods of recording personal medical and health information. In particular, innovative medical solution can be realized when medical researchers and medical service institutes can generally get access to patient data. As EMR data is extremely sensitive, there has been no progress in clinical information exchange. Moreover, patients cannot get access to their own health data and exchange it with researchers or service institutions. It can be operated in terms of technology, yet policy environment are affected by state laws as well as Privacy and Security Policy. Blockchain technology-independent, in transaction, and under test-is introduced in the medical industry in order to settle these problems. In other words, medical organizations can grant preliminary approval on patient information exchange by using the safely encrypted and distributed Blockchain ledger and can be managed independently and completely by individuals. More apparently, medical researchers can gain access to information, thereby contributing to the scientific advance in rare diseases or minor groups in the world. In this paper, we focused on how to manage personal medical information and its protective use and proposes medical treatment exchange system for patients based on a permissioned Blockchain network for the safe PHR operation. Trusted Model for Sharing Medical Data (TMSMD), that is proposed model, is based on exchanging information as patients rely on hospitals as well as among hospitals. And introduce medical treatment exchange system for patients based on a permissioned Blockchain network. This system is a model that encrypts and records patients' medical information by using this permissioned Blockchain and further enhances the security due to its restricted counterfeit. This provides service to share medical information uploaded on the permissioned Blockchain to approved users through role-based access control. In addition, this paper presents methods with smart contracts if medical institutions request patient information complying with domestic laws by using the distributed Blockchain ledger and eventually granting preliminary approval for sharing information. This service will provide an independent information transaction and the Blockchain technology under test will be adopted in the medical industry.

Research Capability Enhancement System Based on Prescriptive Analytics (지시적 분석 기반 역량 강화 시스템)

  • Gim, Jangwon;Jung, Hanmin;Jeong, Do-Heon;Song, Sa-Kwang;Hwang, Myunggwon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.1
    • /
    • pp.46-51
    • /
    • 2015
  • The explosive growth of data and the rapidly changing technical social evolution new analysis paradigm for predicting and reacting the future the past and present ig data. Prescriptive analysis has a fundamental difference because can support specific behaviors and results according to user's goals with defin researchers establish judgments and activities achiev the goals. However research methods not widely implemented and even the terminology, Prescriptive analysis, is still unfamiliar. This paper thus propose an infrastructure in the prescriptive analysis field with key considerations for enhancing capability of researchers through a case study based on InSciTe Advisory developed with scientific big data. InSciTe Advisory system s developed in 2013, and offers a prescriptive analytics report which contains various As-Is analysis results and To-Be analysis results 5W1H methodology. InSciTe Advisory therefore shows possibility strategy aims to reach a target role model group. Through the availability and reliability of the measurement model the evaluation results obtained relative advantage of 118.8% compared to Elsevier SciVal.