• Title/Summary/Keyword: Science and technology classification

Search Result 1,634, Processing Time 0.03 seconds

Research for Radar Signal Classification Model Using Deep Learning Technique (딥 러닝 기법을 이용한 레이더 신호 분류 모델 연구)

  • Kim, Yongjun;Yu, Kihun;Han, Jinwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.170-178
    • /
    • 2019
  • Classification of radar signals in the field of electronic warfare is a problem of discriminating threat types by analyzing enemy threat radar signals such as aircraft, radar, and missile received through electronic warfare equipment. Recent radar systems have adopted a variety of modulation schemes that are different from those used in conventional systems, and are often difficult to analyze using existing algorithms. Also, it is necessary to design a robust algorithm for the signal received in the real environment due to the environmental influence and the measurement error due to the characteristics of the hardware. In this paper, we propose a radar signal classification method which are not affected by radar signal modulation methods and noise generation by using deep learning techniques.

BGOLAM-Based Gender Classification for Intelligent Smart TV Applications (지능형 스마트 TV 응용을 위한 BGOLAM 기반의 성별분류)

  • Oh, Daeyoung;Choi, Jiwon;Kim, Changick
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.552-555
    • /
    • 2011
  • 최근 스마트폰, 태블릿 PC와 같은 모바일 스마트 디바이스(mobile smart devices)와 더불어 스마트 TV에 대한 관심이 크게 증가하면서 사용자들의 컨텐츠와 기능에 대한 요구 또한 다양해지고 있다. 스마트 TV가 컨텐츠와 기능적 측면에서 사용자의 편의와 재미, 그리고 유익함을 동시에 만족시키기 위해서는 더욱 지능화된 기능을 탑재할 필요가 있다. 일반적으로 남녀에 따라 TV를 시청하는 경향이 다르기 때문에 현재 TV를 시청하는 사용자의 성별분류(gender classification)를 통해 성별에 따른 따른 채널이나 광고, 응용 프로그램을 달리 제공하는 성별 기반의 스마트 TV 응용을 개발할 수 있게 된다. 본 논문에서는 스마트 TV 응용에 적합한 BGOLAM 기반의 성별분류 방법에 대해 제안하고, 실험을 통해 제안하는 방법의 적절성을 보인다.

  • PDF

Deep-learning-based system-scale diagnosis of a nuclear power plant with multiple infrared cameras

  • Ik Jae Jin;Do Yeong Lim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.493-505
    • /
    • 2023
  • Comprehensive condition monitoring of large industry systems such as nuclear power plants (NPPs) is essential for safety and maintenance. In this study, we developed novel system-scale diagnostic technology based on deep-learning and IR thermography that can efficiently and cost-effectively classify system conditions using compact Raspberry Pi and IR sensors. This diagnostic technology can identify the presence of an abnormality or accident in whole system, and when an accident occurs, the type of accident and the location of the abnormality can be identified in real-time. For technology development, the experiment for the thermal image measurement and performance validation of major components at each accident condition of NPPs was conducted using a thermal-hydraulic integral effect test facility with compact infrared sensor modules. These thermal images were used for training of deep-learning model, convolutional neural networks (CNN), which is effective for image processing. As a result, a proposed novel diagnostic was developed that can perform diagnosis of components, whole system and accident classification using thermal images. The optimal model was derived based on the modern CNN model and performed prompt and accurate condition monitoring of component and whole system diagnosis, and accident classification. This diagnostic technology is expected to be applied to comprehensive condition monitoring of nuclear power plants for safety.

Finding the Optimal Data Classification Method Using LDA and QDA Discriminant Analysis

  • Kim, SeungJae;Kim, SungHwan
    • Journal of Integrative Natural Science
    • /
    • v.13 no.4
    • /
    • pp.132-140
    • /
    • 2020
  • With the recent introduction of artificial intelligence (AI) technology, the use of data is rapidly increasing, and newly generated data is also rapidly increasing. In order to obtain the results to be analyzed based on these data, the first thing to do is to classify the data well. However, when classifying data, if only one classification technique belonging to the machine learning technique is applied to classify and analyze it, an error of overfitting can be accompanied. In order to reduce or minimize the problems caused by misclassification of the classification system such as overfitting, it is necessary to derive an optimal classification by comparing the results of each classification by applying several classification techniques. If you try to interpret the data with only one classification technique, you will have poor reasoning and poor predictions of results. This study seeks to find a method for optimally classifying data by looking at data from various perspectives and applying various classification techniques such as LDA and QDA, such as linear or nonlinear classification, as a process before data analysis in data analysis. In order to obtain the reliability and sophistication of statistics as a result of big data analysis, it is necessary to analyze the meaning of each variable and the correlation between the variables. If the data is classified differently from the hypothesis test from the beginning, even if the analysis is performed well, unreliable results will be obtained. In other words, prior to big data analysis, it is necessary to ensure that data is well classified to suit the purpose of analysis. This is a process that must be performed before reaching the result by analyzing the data, and it may be a method of optimal data classification.

Topic Classification for Suicidology

  • Read, Jonathon;Velldal, Erik;Ovrelid, Lilja
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.2
    • /
    • pp.143-150
    • /
    • 2012
  • Computational techniques for topic classification can support qualitative research by automatically applying labels in preparation for qualitative analyses. This paper presents an evaluation of supervised learning techniques applied to one such use case, namely, that of labeling emotions, instructions and information in suicide notes. We train a collection of one-versus-all binary support vector machine classifiers, using cost-sensitive learning to deal with class imbalance. The features investigated range from a simple bag-of-words and n-grams over stems, to information drawn from syntactic dependency analysis and WordNet synonym sets. The experimental results are complemented by an analysis of systematic errors in both the output of our system and the gold-standard annotations.

Ensemble Knowledge Distillation for Classification of 14 Thorax Diseases using Chest X-ray Images (흉부 X-선 영상을 이용한 14 가지 흉부 질환 분류를 위한 Ensemble Knowledge Distillation)

  • Ho, Thi Kieu Khanh;Jeon, Younghoon;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.313-315
    • /
    • 2021
  • Timely and accurate diagnosis of lung diseases using Chest X-ray images has been gained much attention from the computer vision and medical imaging communities. Although previous studies have presented the capability of deep convolutional neural networks by achieving competitive binary classification results, their models were seemingly unreliable to effectively distinguish multiple disease groups using a large number of x-ray images. In this paper, we aim to build an advanced approach, so-called Ensemble Knowledge Distillation (EKD), to significantly boost the classification accuracies, compared to traditional KD methods by distilling knowledge from a cumbersome teacher model into an ensemble of lightweight student models with parallel branches trained with ground truth labels. Therefore, learning features at different branches of the student models could enable the network to learn diverse patterns and improve the qualify of final predictions through an ensemble learning solution. Although we observed that experiments on the well-established ChestX-ray14 dataset showed the classification improvements of traditional KD compared to the base transfer learning approach, the EKD performance would be expected to potentially enhance classification accuracy and model generalization, especially in situations of the imbalanced dataset and the interdependency of 14 weakly annotated thorax diseases.

  • PDF

Machine Learning-based Classification of Hyperspectral Imagery

  • Haq, Mohd Anul;Rehman, Ziaur;Ahmed, Ahsan;Khan, Mohd Abdul Rahim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.193-202
    • /
    • 2022
  • The classification of hyperspectral imagery (HSI) is essential in the surface of earth observation. Due to the continuous large number of bands, HSI data provide rich information about the object of study; however, it suffers from the curse of dimensionality. Dimensionality reduction is an essential aspect of Machine learning classification. The algorithms based on feature extraction can overcome the data dimensionality issue, thereby allowing the classifiers to utilize comprehensive models to reduce computational costs. This paper assesses and compares two HSI classification techniques. The first is based on the Joint Spatial-Spectral Stacked Autoencoder (JSSSA) method, the second is based on a shallow Artificial Neural Network (SNN), and the third is used the SVM model. The performance of the JSSSA technique is better than the SNN classification technique based on the overall accuracy and Kappa coefficient values. We observed that the JSSSA based method surpasses the SNN technique with an overall accuracy of 96.13% and Kappa coefficient value of 0.95. SNN also achieved a good accuracy of 92.40% and a Kappa coefficient value of 0.90, and SVM achieved an accuracy of 82.87%. The current study suggests that both JSSSA and SNN based techniques prove to be efficient methods for hyperspectral classification of snow features. This work classified the labeled/ground-truth datasets of snow in multiple classes. The labeled/ground-truth data can be valuable for applying deep neural networks such as CNN, hybrid CNN, RNN for glaciology, and snow-related hazard applications.

Discriminant analysis of grain flours for rice paper using fluorescence hyperspectral imaging system and chemometric methods

  • Seo, Youngwook;Lee, Ahyeong;Kim, Bal-Geum;Lim, Jongguk
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.633-644
    • /
    • 2020
  • Rice paper is an element of Vietnamese cuisine that can be used to wrap vegetables and meat. Rice and starch are the main ingredients of rice paper and their mixing ratio is important for quality control. In a commercial factory, assessment of food safety and quantitative supply is a challenging issue. A rapid and non-destructive monitoring system is therefore necessary in commercial production systems to ensure the food safety of rice and starch flour for the rice paper wrap. In this study, fluorescence hyperspectral imaging technology was applied to classify grain flours. Using the 3D hyper cube of fluorescence hyperspectral imaging (fHSI, 420 - 730 nm), spectral and spatial data and chemometric methods were applied to detect and classify flours. Eight flours (rice: 4, starch: 4) were prepared and hyperspectral images were acquired in a 5 (L) × 5 (W) × 1.5 (H) cm container. Linear discriminant analysis (LDA), partial least square discriminant analysis (PLSDA), support vector machine (SVM), classification and regression tree (CART), and random forest (RF) with a few preprocessing methods (multivariate scatter correction [MSC], 1st and 2nd derivative and moving average) were applied to classify grain flours and the accuracy was compared using a confusion matrix (accuracy and kappa coefficient). LDA with moving average showed the highest accuracy at A = 0.9362 (K = 0.9270). 1D convolutional neural network (CNN) demonstrated a classification result of A = 0.94 and showed improved classification results between mimyeon flour (MF)1 and MF2 of 0.72 and 0.87, respectively. In this study, the potential of non-destructive detection and classification of grain flours using fHSI technology and machine learning methods was demonstrated.

A Study on Shell-Shaped Target Classification Using RCS and Fuzzy Classifier (RCS와 퍼지 구분기를 이용한 포탄 형태의 표적 식별기법에 대한 연구)

  • Lee, Seung-Jae;Jung, Sung-Jae;Kang, Byung-Soo;Na, Hyung-Gi;Kim, Hyun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.576-584
    • /
    • 2014
  • In this paper, a study on the optimization of fuzzy classifier using radar cross section(RCS) values is presented to classify shell-shaped targets. Method of moments(MOM) is exploited to construct RCS database of generic shell-shaped targets in uniform angular intervals. Relative orientations are estimated from various flight scenarios of shell-shaped targets, and associated RCS values are interpolated from the generated RCS database with uniform angular intervals. Initial membership functions are determined using the interpolated RCS values, and particle swarm optimization(PSO) is utilized to optimize the membership functions of the fuzzy classifier in terms of probability of correct classification.

Unmanned AerialVehicles Images Based Tidal Flat Surface Sedimentary Facies Mapping Using Regression Kriging (회귀 크리깅을 이용한 무인기 영상 기반의 갯벌 표층 퇴적상 분포도 작성)

  • Geun-Ho Kwak;Keunyong Kim;Jingyo Lee;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.537-549
    • /
    • 2023
  • The distribution characteristics of tidal flat sediment components are used as an essential data for coastal environment analysis and environmental impact assessment. Therefore, a reliable classification map of surface sedimentary facies is essential. This study evaluated the applicability of regression kriging to generate a classification map of the sedimentary facies of tidal flats. For this aim, various factors such as the number of field survey data and remote sensing-based auxiliary data, the effect of regression models on regression kriging, and the comparison with other prediction methods (univariate kriging and regression analysis) on surface sedimentary facies classification were investigated. To evaluate the applicability of regression kriging, a case study using unmanned aerial vehicle (UAV) data was conducted on the Hwang-do tidal flat located at Anmyeon-do, Taean-gun, Korea. As a result of the case study, it was most important to secure an appropriate amount of field survey data and to use topographic elevation and channel density as auxiliary data to produce a reliable tidal flat surface sediment facies classification map. In addition, regression kriging, which can consider detailed characteristics of the sediment distributions using ultra-high resolution UAV data, had the best prediction performance compared to other prediction methods. It is expected that this result can be used as a guideline to produce the tidal flat surface sedimentary facies classification map.