• Title/Summary/Keyword: Schur product map

Search Result 2, Processing Time 0.014 seconds

CORESTRICTION MAP ON BRAUER SUBGROUPS

  • CHOI, EUN-MI
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.35-49
    • /
    • 2005
  • For an extension field K of k, a restriction homomorphism on Brauer k-group B(k) maps Brauer k-algebras to Brauer K- algebras by tensor product. A purpose of this work is to study the restriction map that sends radical (Schur) k-algebras to radical (Schur) K-algebras. And we ask an analogous question with respect to corestriction map on Brauer group B(K) that whether the corestriction map sends radical K-algebras to radical k-algebras.

NORMS FOR SCHUR PRODUCTS

  • Shin, Dong-Yun
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.571-577
    • /
    • 1997
  • We first show that if $\psi : M_n(B(H)) \to M_n (B(H))$ is a $D_n \otimes F(H)$-bimodule map, then there is a matrix $A \in M_n$ such that $\psi = S_A$. Secondly, we show that for an operator space $\varepsilon, A \in M_n$, the Schur product map $S_A : M_n(\varepsilon) \to M_n(\varepsilon)$ and $\phi_A : M_n(\varepsilon) \to \varepsilon$, defined by $\phi_A([x_{ij}]) = \sum^{n}_{i,j=1}{a_{ij}x_{ij}}$, we have $\Vert S_A \Vert = \Vert S_A \Vert_{cb} = \Vert A \Vert_S, \Vert \phi_A \Vert = \Vert \phi_A \Vert_{cb} = \Vert A \Vert_1$ and obtain some characterizations of A for which $S_A$ is contractive.

  • PDF