• Title/Summary/Keyword: Schur 알고리즘

Search Result 4, Processing Time 0.015 seconds

Schur Algorithm for Sub-bottom Profiling (해저지층 탐사를 위한 Schur 알고리즘)

  • Bae, Jinho;Lee, Chong Hyun;Kim, Hoeyong;Cho, Jung-Hong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.156-163
    • /
    • 2013
  • In this paper, we propose an algorithm for estimating media characteristics of sea water and subbottom multi-layers. The proposed algorithm for estimating reflection coefficients, uses a transmitted signal and reflected signal obtained from multiple layers of various shape and structure, and the algorithm is called Schur algorithm. The algorithm is efficient in estimating the reflection coefficients since it finds solution by converting the given inverse scattering problem into matrix factorization. To verify the proposed algorithm, we generate a transmit signal and reflected signal obtained from lattice filter model for sea water and subbottom of multi-level non-homogeneous layers, and then find that the proposed algorithm can estimate reflection coefficients efficiently.

Sub-bottom Profiling Algorithm using Parametric Array (파라메트릭 배열을 이용한 해저지층 탐사 알고리즘)

  • Lee, Chong Hyun;Lee, Jaeil;Bae, Jinho
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.55-63
    • /
    • 2014
  • In this paper, we propose an threshold-based Schur algorithm for estimating the media characteristics of sub-bottom multi-layers by using the signal generated by a parametric array transducer. We use the KZK model to generate a parametric array signal, and use the proposed threshold-based Schur algorithm for estimating the reflection coefficients of multiple sea bottom layers. Using computer simulation, we verify that the difference frequency component generated by the KZK model prevails over the signals of primary frequencies at long range. For the simulation, we use the transmit signal generated by the KZK and the reflected signal obtained from a lattice filter model for the seawater and sub-bottom of multi-level non-homogeneous layers. Through the simulation, we verify that the proposed threshold-based Schur algorithm can give much more accurate and efficient estimates of the reflection coefficients than methods using received signal, matched filter output signal, and normal Schur algorithm output.

Pipelining of orthogonal Double-Rotation Digital Lattice Filters for High-Speed and Low-Power Implementation (고속 및 저파워 실현을 위한 직교 이중 회전 디지털 격자 필터의 파이프라인화)

  • 정진균;엄경배
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2409-2417
    • /
    • 1994
  • The ODR(orthogonal double-rotation) digital lattice filters have desirable properties for VLSI implementation such as local connection, regularity and pipelinability. These filters are also known to exhibit good numerical behavior for finite precision implementation. Although these filters can be pipelined by the cut-set localization procedure, it should be noted that the maximum sample rate obtained by this technique is limited by the feedback computations. In this paper, a pipelining method for the ODR digital lattice filter is proposed, by which the sample rate can be increased at any desired level. it is also shown that the low-power CMOS digital implementation of ODR digital lattice filters can be done successfully using our pipelining method. The pipelining method is based on the properties of the Schur algoithm, constrained filter design methods, and the polyphase decomposition technique.

  • PDF

Tracking Algorithm Based on Moving Slide Window for Manuevering Target (이동표적을 위한 이동 창 함수 기반 추적 알고리즘)

  • Bae, Jinho;Lee, Chong Hyun;Jeon, Hyoung-Goo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.129-135
    • /
    • 2016
  • In this paper, we propose a novel tracking algorithm called slide window tracker (SWT) suitable for maneuvering target. To efficiently estimate trajectory of moving target, we adopt a sliding piecewise linear window which includes past trace information. By adjusting the window parameters, the proposed algorithm is to reduce measurement noise and to track fast maneuvering target with little computational increment as compared to ${\alpha}-{\beta}$ tracker. Throughout the computer simulations, we verify outstanding tracking performance of the SWT algorithm in noisy linear and nonlinear trajectories. Also, we show that the SWT algorithm is not sensitive to initial model parameter selection, which gives large degree of freedom in applying the SWT algorithm to unknown time-varying measurement environments.