• Title/Summary/Keyword: School architecture

Search Result 7,015, Processing Time 0.04 seconds

Monitoring Vegetation Changes after Constructing the Vegetation-mat Measures for Greening in Embankment - A Case Study of Tancheon, Seongnam - (호안 녹화용 매트 시공 후 식생변화 모니터링 - 성남시 탄천을 중심으로 -)

  • Lee, Soo-Dong;Kang, Hyun-Kyung;Jang, Han-Sol
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.3
    • /
    • pp.302-317
    • /
    • 2010
  • In this study, not only to present the management plan but also to verify the effectiveness for a area of improving the landscape and the area of creating the base of bio-inhabitation in Tancheon stream concrete embankment where were practised the vegetation-mat measures for greening via monitoring i.e. restoration progress. The results of monitoring, there were a total of 41 taxa, 18 families, 38 species, 3 varieties in 2006, moreover in the 2007, there were a total of 59 taxa, 19 families, 56 species, 3 varieties and in the period 2008, 64 taxa, 29 families, 59 species, 8 varieties. Therefore, these site has increased the plant spaces year by year. The distribution of vegetation characteristics shows that Miscanthus sacchariflorus and Pennisetum alopecuroides expands their influence in the area of applying the construction method. Those area appears a diversity of native species by the stream deposition at the flood. Thus, its condition is very soundly ecological health and eco-friend. At present, native species have been dominant, however, disturbed species and invasive species can be expected to increase dramatically in the future. Therefore, it is necessary to a long-range monitoring and management for maintaining an environmentally sound aquatic ecosystem. On this area refer to mix the river vegetation of primary succession and disturbed vegetation. For that reason, the method of constructing the vegetation-mat measures for greening in embankment does not need to remove the concrete and can install a coir-mat on the top. It leads to improve the landscape, moreover, it was analysed the such dramatic changes in the vegetation species richness by providing continuous the plant growth basis have a impact on in bio-diversity.

Research on Characteristics of Vegetation Subsequent to Crossing Structure of the Urban Streams - Centering on the Cases of Dorimcheon, Banghakcheon, Seongnaecheon and Yangjaecheon in Seoul - (도시하천의 횡단구조에 따른 식생분포특성 연구 -서울시 도림천, 방학천, 성내천, 양재천을 사례로-)

  • Bae, Jung-Hee;Lee, Kyong-Jae;Han, Bong-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.3
    • /
    • pp.268-279
    • /
    • 2008
  • This study is aimed at typifying the crossing structure and inquiring into the characteristics of vegetation distribution by type targeting Dorimcheon(stream), Banghakcheon(stream), Seongnaecheon(stream) and some sections of Yangjaecheon(stream) in Seoul through the establishment of basic data for restoring vegetation in urban stream. This research classified the crossing structure into 56 slope types and 31 vertical types in combination with the three items, such as bank slope(vertical style, slope style) of bank, absence or presence of waterside, and revetment structure. This research derived nine slope types including SB1 (revetment of low water level-revetment with vegetation, and revetment of high water level-nature riverside) including SG5(revetment of low water-concrete, and revetment of high water level-riprap work), and three vertical types, such as VH4(bank revetment-wet masonry), and VH7(bank revetment - concrete )from the target survey areas. Among these, both revetment of low water level and high water level were found to be distributed on the longest section as the type of SG7 and VG7 structured in concrete. As a result of inquiry and analysis of micro topography structure and vegetation structure of eight major types, this research could find out the influence of crossing structure on plant vegetation according to the characteristic by typified item, but there appeared no distinct characteristic of vegetation distribution by crossing structure.

One-Chip Multi-Output SMPS using a Shared Digital Controller and Pseudo Relaxation Oscillating Technique (디지털 컨트롤러 공유 및 Pseudo Relaxation Oscillating 기법을 이용한 원-칩 다중출력 SMPS)

  • Park, Young-Kyun;Lim, Ji-Hoon;Wee, Jae-Kyung;Lee, Yong-Keun;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.148-156
    • /
    • 2013
  • This paper suggests a multi-level and multi-output SMPS based on a shared digital logic controller through independently operating in each dedicated time periods. Although the shared architecture can be devised with small area and high efficiency, it has critical drawbacks that real-time control of each DPWM generators are impossible and its output voltage can be unstable. To solve these problems, a real-time current compensation scheme is proposed as a solution. A current consumption of the core block and entire block with four driver buffers was simulated about 4.9mA and 30mA at 10MHz switching frequency and 100MHz core operating frequency. Output voltage ripple was 11 mV at 3.3V output voltage. Over/undershoot voltage was 10mV/19.6mV at 3.3V output voltage. The noise performance was simulated at 800mA and 100KHz load regulation. Core circuit can be implemented small size in $700{\mu}m{\times}800{\mu}m$ area. For the verification of proposed circuit, the simulations were carried out with Dong-bu Hitek BCD $0.35{\mu}m$ technology.

Seismic and Stress Analysis of 72.5kV GIS for Technical Specification of KEPCO (72.5kV GIS 전력 장비의 KEPCO 기준 내진 및 응력 해석)

  • Lee, Jae-Hwan;Kim, Young-Joong;Kim, So-Ul;Bang, Myung-Suk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.207-214
    • /
    • 2017
  • High voltage electric power transmitter GIS(Gas Insulated Switchgear) above 72.5kV needs to satisfy domestic Korean peninsular standard(ES-6110-0002) in KEPCO with respect to normal and special operation conditions which include internal gas pressure, dead weight, wind and seismic load. Some other requirements not described in Korean standard can be applied from other international standards such as IEC(International Electronical Committee) 62271-203 and 62271-207. The GIS is a kind of pressure vessel structure made of aluminum and filled with SF6 gas of internal pressure 0.4~0.5MPa. Finite element analysis of GIS is performed with such operational loads including seismic loading and the stability and reliability is determined according to ASME BPVC(Boiler and Pressure Vessel Code) SEC. VIII standard where the allowable stress level of the pressure vessel is suggested. The result shows that the stress of GIS is satisfied the allowable stress level and the safety factor is about 2.3 for Korean peninsular standard.

Marginal and internal fit of all ceramic crown using the replica technique and the triple-scan protocol (Replica technique과 Triple-scan protocol을 이용한 지르코니아 전부도재관의 변연 및 내면 적합도에 관한 비교 연구)

  • Shin, Mi-Sun;Lee, Jang-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.4
    • /
    • pp.372-380
    • /
    • 2017
  • This study was conducted to compare the marginal and internal fit of all ceramic crown using the replica technique and the triple-scan protocol. Materials and methods: Twenty zirconia ceramic crowns were fabricated using titanium abutment model. All crowns were divided into two groups of 10 each, depending on the replica technique and the triple-scan protocol. The internal and marginal fit of 10 zirconia ceramic crowns were measured at 17 points for each specimen using the replica technique. The other 10 ceramic crowns were measured using the triple-scan protocol. Statistical analysis was performed by t-test (${\alpha}=.05$). Results: The mean and standard deviation of marginal and internal fit were significantly different between the replica technique ($49.86{\pm}29.69{\mu}m$) and triple-scan protocol ($75.35{\pm}64.73{\mu}m$, P<.001). The mean and standard deviation of internal fit except marginal fit were $58.38{\pm}31.77{\mu}m$ and $64.00{\pm}46.43{\mu}m$, respectively (P>.343). Conclusion: There was a statistically significant difference in the marginal fit measured by the two methods. However, there was no statistically significant difference in the internal fit between the two methods.

Composition Changes in Cement Matrix of RC Column Exposed to Fire (화재에 노출된 RC기둥 시멘트 매트릭스의 구성성분 변화)

  • Kim, Jung-Joong;Youm, Kwang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.369-375
    • /
    • 2014
  • This study examined the changes of microstructural compositions in cement matrix according to the depth from the surface of a reinforced concrete (RC) column exposed to fire. The RC column was exposed to a standard fire for 180 minutes. After the fire test, core samples passing through the column section were obtained. Using the core samples, the remaining fractions of calcium-silicate-hydrates (C-S-H) and calcium hydroxide in cement matrix at the surface, the depth of 40 mm and 80 mm and the center (175 mm) were examined using thermal gravimetric analysis (TGA) and X-ray diffraction analysis (XRDA). Using nuclear magnetic resonance (NMR) technique, the silicate polymerization of C-S-H in cement matrix was also evaluated. The experimental results indicated that the amount of C-S-H loss at the center of column experiencing the transferred fire temperature of $236^{\circ}C$ has been underestimated as the TGA results showed the highest C-S-H contents are located at the depth of 80 mm, where the transferred fire temperature is $419^{\circ}C$. Moreover, the destruction of silicate connections at the center was observed as similar as that at the depth of 40 mm, where the transferred fire temperature was $618^{\circ}C$. This might be attributed to the temperature changes during cooling time after the fire test was neglected. Due to the relatively low thermal conductivity of concrete, the high temperature, which can affect the change of microstructure in cements, will hold longer at the center of the column than other depth.

Experimental Evaluation of the Punching Shear Strength with Lightweight Aggregate Concrete Slabs (경량골재 콘크리트 바닥판의 펀칭전단강도의 실험적 평가)

  • Kim, Jung-Joong;Moon, Ji-Ho;Youm, Kwang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.361-367
    • /
    • 2014
  • This paper investigates the punching shear strength of lightweight aggregate concrete (LWAC) slabs through a series of experimental study. Five full scale slabs were constructed using normal concrete and four different types of LWAC. Each lightweight aggregate (LWA) used in this study had different sources (clay, shale, or slate) and shapes (crushed or spherical shape). Based on the test results, the effect of the lightweight aggregates (LWA) on the punching shear behavior was investigated. From the test results, it was found that the punching shear failure surface of LWAC slab with spherical shape coarse aggregate was less inclined than that with crushed shape coarse aggregate, which resulted in an increase of the area of the shear failure surface. As a result, it leads to the increased punching shear strength of the slab. On the other hand, the failure surfaces of LWAC slab with crushed shape coarse aggregate and normal coarse aggregate were inclined similarly. Finally, the test results of this study were compared with the punching shear strength obtained from current design models, such as ACI and CEB-FIP, to examine the validation of current design model to predict the punching shear strength of the LWAC slab.

Mechanical Performance Evaluation of Cement Paste with Foaming Agent using FEM Analysis Based on Picture Image (화상 이미지 기반 FEM 해석을 이용한 기포제 혼입 시멘트 페이스트의 역학 성능 평가)

  • Kim, Bo-Seok;Shin, Jun-Ho;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • Concrete is a representative heterogeneous material and mechanical properties of concrete are influenced by various factors. Due to the fact that pores in concrete affect determining compressive strength of concrete, studies which deal with distribution and magnitudes of pores are very important. That way, studies using picture imaging have been emerged. Studies on mechanical performance evaluation of structural lightweight foamed concrete and FEM analysis based on picture image are inadequate because lightweight foamed concrete has been researched for only non-structural. Therefore, in this study, cement paste with foaming agent to evaluate mechanical performance is made, FEM analysis with picture image is conducted and young's modulus of experiment and analysis are compared. In this study, dosage of foaming agent is determined 7 level to check pore distribution and water-binder ratio is determined 20% to progress research about structural light weight foamed concrete. Weight of unit volume is minimum at 0.8% of foaming agent dosage. However, weight of unit volume is increased over 0.8% of foaming agent dosage because of interconnection with independent pores. For FEM analysis, cement paste is photographed to use image analyzer(HF-MA C01). Consequently, the fact that Young's Modulus of experiment and FEM analysis are same is drawn by using OOF(Object Oriented Finite elements).

Assessment of the Electromagnetic Pulse Shield Effectiveness of the Wave-guided Below Cutoff Filled with Water and Oil for Guaranteeing the Operational Sustainment of the Command Post (지휘소 작전지속성 보장을 위한 도파관의 전자기파 차폐성능 향상방안)

  • Yoon, Sangho;Son, Kiyoung;Kim, Suk Bong;Park, Young Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.579-584
    • /
    • 2013
  • The stable fueling and water supply should be prerequisites to guarantee the operational sustainment of military command post. Meanwhile, in terms of the operational sustainment, it is verified that the current wave-guided below cutoff (WBC) system cannot satisfy the requirement of control associated with water supply and fueling within the command post. In this study, as the dielectric substance can block electromagnetic pulse (EMP), it was tried to identify the shielding effectiveness of the multi WBCs filled with water and diesel for attenuating the EMP effect using experiment based on the MIL STD 188-125-1. According to the experimental results, used water in the experiment show the shielding effectiveness from around 640 MHz frequency because of minerals contained in the water. Furthermore, it was noted that EMP attenuating strength of the WBC filled with diesel was enlarged from around 1,680 MHz frequency. Resultingly, it could be concluded that it is enough to supply stable water and diesel through the multi WBC to block EMP within the military command post for guaranteeing the military operations sustainment.

Development of Estimation Method for Velocity Pressure Exposure Coefficient of Buildings Based on Spatial Information (공간정보기반 건축물의 풍속고도분포계수 산정 방법 개발)

  • SEO, Eun-Su;CHOI, Se-Hyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.2
    • /
    • pp.32-46
    • /
    • 2017
  • Recent rapid urban expansion and crowding of various industrial facilities has affected the features of a significant part of downtown area, resulting in areas having buildings with a wide range of height and the foothills. To compute a velocity pressure exposure coefficient, namely the design wind speed factor, this study defines ground surface roughness by utilizing concentration analysis for the height of each building. After obtaining spatial data by extracting a building layer from digital maps, the study area was partitioned for the concentration analysis and to allow investigation of the frequency distribution of building heights. Concentration analysis by building height was determined with the Variation-to-Means Ratio (VMR) and Poisson distribution analysis using a buildings distribution chart, with statistical significance determined using Chi-square verification. Applying geographic information systems (GIS) with the architectural information made it possible to estimate a velocity pressure exposure coefficient factor more quantitatively and objectively, by including geographic features, as compared to current methods. Thus, this method is expected to eliminate inaccuracies that arise when building designers calculate the velocity pressure exposure coefficient in subjective way, and to help increase the wind resistance of buildings in a more logical and cost-effective way.