• 제목/요약/키워드: School Network

검색결과 7,561건 처리시간 0.036초

GAN-Based Local Lightness-Aware Enhancement Network for Underexposed Images

  • Chen, Yong;Huang, Meiyong;Liu, Huanlin;Zhang, Jinliang;Shao, Kaixin
    • Journal of Information Processing Systems
    • /
    • 제18권4호
    • /
    • pp.575-586
    • /
    • 2022
  • Uneven light in real-world causes visual degradation for underexposed regions. For these regions, insufficient consideration during enhancement procedure will result in over-/under-exposure, loss of details and color distortion. Confronting such challenges, an unsupervised low-light image enhancement network is proposed in this paper based on the guidance of the unpaired low-/normal-light images. The key components in our network include super-resolution module (SRM), a GAN-based low-light image enhancement network (LLIEN), and denoising-scaling module (DSM). The SRM improves the resolution of the low-light input images before illumination enhancement. Such design philosophy improves the effectiveness of texture details preservation by operating in high-resolution space. Subsequently, local lightness attention module in LLIEN effectively distinguishes unevenly illuminated areas and puts emphasis on low-light areas, ensuring the spatial consistency of illumination for locally underexposed images. Then, multiple discriminators, i.e., global discriminator, local region discriminator, and color discriminator performs assessment from different perspectives to avoid over-/under-exposure and color distortion, which guides the network to generate images that in line with human aesthetic perception. Finally, the DSM performs noise removal and obtains high-quality enhanced images. Both qualitative and quantitative experiments demonstrate that our approach achieves favorable results, which indicates its superior capacity on illumination and texture details restoration.

CAttNet: A Compound Attention Network for Depth Estimation of Light Field Images

  • Dingkang Hua;Qian Zhang;Wan Liao;Bin Wang;Tao Yan
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.483-497
    • /
    • 2023
  • Depth estimation is one of the most complicated and difficult problems to deal with in the light field. In this paper, a compound attention convolutional neural network (CAttNet) is proposed to extract depth maps from light field images. To make more effective use of the sub-aperture images (SAIs) of light field and reduce the redundancy in SAIs, we use a compound attention mechanism to weigh the channel and space of the feature map after extracting the primary features, so it can more efficiently select the required view and the important area within the view. We modified various layers of feature extraction to make it more efficient and useful to extract features without adding parameters. By exploring the characteristics of light field, we increased the network depth and optimized the network structure to reduce the adverse impact of this change. CAttNet can efficiently utilize different SAIs correlations and features to generate a high-quality light field depth map. The experimental results show that CAttNet has advantages in both accuracy and time.

중등학교 가정과교사 임용시험의 핵심 키워드 탐색: 내용 분석과 텍스트 네트워크 분석을 중심으로 (Exploring the Core Keywords of the Secondary School Home Economics Teacher Selection Test: A Mixed Method of Content and Text Network Analyses)

  • 박미정;한주
    • Human Ecology Research
    • /
    • 제60권4호
    • /
    • pp.625-643
    • /
    • 2022
  • The purpose of this study was to explore the trends and core keywords of the secondary school home economics teacher selection test using content analysis and text network analysis. The sample comprised texts of the secondary school home economics teacher 1st selection test for the 2017-2022 school years. Determination of frequency of occurrence, generation of word clouds, centrality analysis, and topic modeling were performed using NetMiner 4.4. The key results were as follows. First, content analysis revealed that the number of questions and scores for each subject (field) has remained constant since 2020, unlike before 2020. In terms of subjects, most questions focused on 'theory of home economics education', and among the evaluation content elements, the highest percentage of questions asked was for 'home economics teaching·learning methods and practice'. Second, the network of the secondary school home economics teacher selection test covering the 2017-2022 school years has an extremely weak density. For the 2017-2019 school years, 'learning', 'evaluation', 'instruction', and 'method' appeared as important keywords, and 7 topics were extracted. For the 2020-2022 school years, 'evaluation', 'class', 'learning', 'cycle', and 'model' were influential keywords, and five topics were extracted. This study is meaningful in that it attempted a new research method combining content analysis and text network analysis and prepared basic data for the revision of the evaluation area and evaluation content elements of the secondary school home economics teacher selection test.

Classification of Pathological Voice Using Artigicial Neural Network with Normalized Parameters

  • Li, Tao;Bak, Il-Suh;Jo, Cheol-Woo
    • 음성과학
    • /
    • 제11권1호
    • /
    • pp.21-29
    • /
    • 2004
  • In this paper we examined the effect of normalization on discriminating the pathological voice into normal and abnormal classes using artificial neural network. Average values per each parameter were used to normalize each set of parameter values. Artificial neural networks were used as classifiers. And the effect of normalization was evaluated by comparing the discrimination results between original and normalized parameter sets.

  • PDF

A Lightweight Detection Mechanism against Sybil Attack in Wireless Sensor Network

  • Shi, Wei;Liu, Sanyang;Zhang, Zhaohui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권9호
    • /
    • pp.3738-3750
    • /
    • 2015
  • Sybil attack is a special kind of attack which is difficult to be detected in Wireless Sensor Network (WSN). So a lightweight detection mechanism based on LEACH-RSSI-ID (LRD) is proposed in this paper. Due to the characteristic of Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol, none of nodes can be the cluster head forever.

영상통화에 최적화된 관심영역 기반 H.264|AVC 비트 율 제어 방법 (A ROI Based Rate Control Algorithm in H.264|AVC Optimized for Video Telephony)

  • 김창희;임정연;주영호;김기문;변재완;김문철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.797-798
    • /
    • 2008
  • Visual quality of video telephony over 3G networks is not satisfactory due to limited bandwidths. Therefore, it is worthwhile to enhance subjective visual quality based on ROI coding. In this paper, we propose a rate-control algorithm for video telephony with ROI based H.264|AVC coding. The QP values are increasingly assigned in non-ROI away from the ROI so that graceful degradation of visual quality can be achieved, which is more visually pleasant.

  • PDF

Inferring genetic regulatory networks of the inflammatory bowel disease in human peripheral blood mononuclear cells

  • Kim, Jin-Ki;Lee, Do-Heon;Yi, Gwan-Su
    • Bioinformatics and Biosystems
    • /
    • 제2권2호
    • /
    • pp.71-74
    • /
    • 2007
  • Cell phenotypes are determined by groups of functionally related genes. Microarray profiling of gene expression provides us response of cellular state to its perturbation. Several methods for uncovering a cellular network show reliable network reconstruction. In this study, we present reconstruction of genetic regulatory network of inflammation bowel disease in human peripheral blood mononuclear cell. The microarray based on Affymetrix Gene Chip Human Genome U133 Array Set HG-U133A is processed and applied network reconstruction algorithm, ARACNe. As a result, we will show that inferred network composed of 450 nodes and 2017 edges is roughly scale-free network and hierarchical organization. The major hub, CCNL2 (cyclin A2), in inferred network is shown to be associated with inflammatory function as well as apoptotic function.

  • PDF

Reverse Engineering of a Gene Regulatory Network from Time-Series Data Using Mutual Information

  • Barman, Shohag;Kwon, Yung-Keun
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.849-852
    • /
    • 2014
  • Reverse engineering of gene regulatory network is a challenging task in computational biology. To detect a regulatory relationship among genes from time series data is called reverse engineering. Reverse engineering helps to discover the architecture of the underlying gene regulatory network. Besides, it insights into the disease process, biological process and drug discovery. There are many statistical approaches available for reverse engineering of gene regulatory network. In our paper, we propose pairwise mutual information for the reverse engineering of a gene regulatory network from time series data. Firstly, we create random boolean networks by the well-known $Erd{\ddot{o}}s-R{\acute{e}}nyi$ model. Secondly, we generate artificial time series data from that network. Then, we calculate pairwise mutual information for predicting the network. We implement of our system on java platform. To visualize the random boolean network graphically we use cytoscape plugins 2.8.0.

A Network Storage LSI Suitable for Home Network

  • Lim, Han-Kyu;Han, Ji-Ho;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제4권4호
    • /
    • pp.258-262
    • /
    • 2004
  • Storage over Ethernet (SoE) is a network storage architecture that allows direct attachment of existing ATA/ATAPI devices to Ethernet without a separate server. Unlike SAN, no server computer intervenes between the storage and the client hosts. We propose a SoE disk controller (SoEDC) amenable to low-cost, single-chip implementation that processes a simplified L3/L4 protocol and converts commands between Ethernet and ATA/ATAPI, while the rest of the complex tasks are performed by the remote hosts. Thanks to simple architecture and protocol, the SoEDC implemented on a single $4mm{\times}4mm$ chip in 0.18um CMOS technology achieves maximum throughput of 55MB/s on Gigabit Ethernet, which is comparable to that of a high-performance disk storage locally attached to a host computer.