• Title/Summary/Keyword: School Library Use

Search Result 327, Processing Time 0.022 seconds

Hybrid Detection Algorithm of Copy-Paste Image Forgery (Copy-Paste 영상 위조의 하이브리드 검출 알고리즘)

  • Choi, YongSoo;Atnafu, Ayalneh Dessalegn;Lee, DalHo
    • Journal of Digital Contents Society
    • /
    • v.16 no.3
    • /
    • pp.389-395
    • /
    • 2015
  • Digital image provides many conveniences at the internet environment recently. A great number of applications, like Digital Library, Stock Image, Personal Image and Important Information, require the use of digital image. However it has fatal defect which is easy to be modified because digital image is only electronic file. Numerous digital image forgeries have become a serious problem due to the sophistication and accessibility of image editing software. Copy-Move forgery is the simplest type of forgery that involves copying portion of an image and paste it on different location within the image. There are many approaches to detect Copy-Move forgery, but all of them have their own limitations. In this paper, visual and invisible feature based forgery detection techniques are tested and analyzed. The analysis shows that pros and cons of these two techniques compensate each other. Therefore, a hybrid of visual based and invisible feature based forgery detection that combine the merits of both techniques is proposed. The experimental results show that the proposed algorithm has enhanced performance compared to individual techniques. Moreover, it provides more information about the forgery, like identifying copy and duplicate regions.

Audiobook Text Shaping for Synesthesia Voice Training - Focusing on Paralanguages - (오디오북 텍스트 형상화를 위한 공감각적 음성 훈련 연구 - 유사언어를 활용하여 -)

  • Cho, Ye-Shin;Choi, Jae-Oh
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.8
    • /
    • pp.167-180
    • /
    • 2019
  • The purpose of this study is to find out the results of synesthesia speech training using similar language for shaping audiobook text. The audiobook text for training uses Tolstoy's work, and uses similar language of tone, tone, pose, speed, intonation, accent, and expression of emotions. The participants who ten visually impaired trainee in H library were selected for qualitative research. Based on the research questions raised in this study, the results are as follows. First, synesthesia training, in which more than two senses of the five senses work simultaneously in voice training for audio book text shaping, produced the result by visualizing the original purpose, meaning, and background of the text. Second, the use of similar language was helpful in the whole process of expressing the meaning of sentence and dialogue for audiobook text shaping. In addition, although there were some differences among the study subjects, they found commonalities that considered tone, pose, and intonation important. Third, the visually impaired have advanced sensory aspects and memory, which resulted in rapid acquisition of metabolism and acceptance of transmission during training. In addition, the teacher's friendly behavior was a very important key mediator in the training process.

Emoticon by Emotions: The Development of an Emoticon Recommendation System Based on Consumer Emotions (Emoticon by Emotions: 소비자 감성 기반 이모티콘 추천 시스템 개발)

  • Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.227-252
    • /
    • 2018
  • The evolution of instant communication has mirrored the development of the Internet and messenger applications are among the most representative manifestations of instant communication technologies. In messenger applications, senders use emoticons to supplement the emotions conveyed in the text of their messages. The fact that communication via messenger applications is not face-to-face makes it difficult for senders to communicate their emotions to message recipients. Emoticons have long been used as symbols that indicate the moods of speakers. However, at present, emoticon-use is evolving into a means of conveying the psychological states of consumers who want to express individual characteristics and personality quirks while communicating their emotions to others. The fact that companies like KakaoTalk, Line, Apple, etc. have begun conducting emoticon business and sales of related content are expected to gradually increase testifies to the significance of this phenomenon. Nevertheless, despite the development of emoticons themselves and the growth of the emoticon market, no suitable emoticon recommendation system has yet been developed. Even KakaoTalk, a messenger application that commands more than 90% of domestic market share in South Korea, just grouped in to popularity, most recent, or brief category. This means consumers face the inconvenience of constantly scrolling around to locate the emoticons they want. The creation of an emoticon recommendation system would improve consumer convenience and satisfaction and increase the sales revenue of companies the sell emoticons. To recommend appropriate emoticons, it is necessary to quantify the emotions that the consumer sees and emotions. Such quantification will enable us to analyze the characteristics and emotions felt by consumers who used similar emoticons, which, in turn, will facilitate our emoticon recommendations for consumers. One way to quantify emoticons use is metadata-ization. Metadata-ization is a means of structuring or organizing unstructured and semi-structured data to extract meaning. By structuring unstructured emoticon data through metadata-ization, we can easily classify emoticons based on the emotions consumers want to express. To determine emoticons' precise emotions, we had to consider sub-detail expressions-not only the seven common emotional adjectives but also the metaphorical expressions that appear only in South Korean proved by previous studies related to emotion focusing on the emoticon's characteristics. We therefore collected the sub-detail expressions of emotion based on the "Shape", "Color" and "Adumbration". Moreover, to design a highly accurate recommendation system, we considered both emotion-technical indexes and emoticon-emotional indexes. We then identified 14 features of emoticon-technical indexes and selected 36 emotional adjectives. The 36 emotional adjectives consisted of contrasting adjectives, which we reduced to 18, and we measured the 18 emotional adjectives using 40 emoticon sets randomly selected from the top-ranked emoticons in the KakaoTalk shop. We surveyed 277 consumers in their mid-twenties who had experience purchasing emoticons; we recruited them online and asked them to evaluate five different emoticon sets. After data acquisition, we conducted a factor analysis of emoticon-emotional factors. We extracted four factors that we named "Comic", Softness", "Modernity" and "Transparency". We analyzed both the relationship between indexes and consumer attitude and the relationship between emoticon-technical indexes and emoticon-emotional factors. Through this process, we confirmed that the emoticon-technical indexes did not directly affect consumer attitudes but had a mediating effect on consumer attitudes through emoticon-emotional factors. The results of the analysis revealed the mechanism consumers use to evaluate emoticons; the results also showed that consumers' emoticon-technical indexes affected emoticon-emotional factors and that the emoticon-emotional factors affected consumer satisfaction. We therefore designed the emoticon recommendation system using only four emoticon-emotional factors; we created a recommendation method to calculate the Euclidean distance from each factors' emotion. In an attempt to increase the accuracy of the emoticon recommendation system, we compared the emotional patterns of selected emoticons with the recommended emoticons. The emotional patterns corresponded in principle. We verified the emoticon recommendation system by testing prediction accuracy; the predictions were 81.02% accurate in the first result, 76.64% accurate in the second, and 81.63% accurate in the third. This study developed a methodology that can be used in various fields academically and practically. We expect that the novel emoticon recommendation system we designed will increase emoticon sales for companies who conduct business in this domain and make consumer experiences more convenient. In addition, this study served as an important first step in the development of an intelligent emoticon recommendation system. The emotional factors proposed in this study could be collected in an emotional library that could serve as an emotion index for evaluation when new emoticons are released. Moreover, by combining the accumulated emotional library with company sales data, sales information, and consumer data, companies could develop hybrid recommendation systems that would bolster convenience for consumers and serve as intellectual assets that companies could strategically deploy.

A Review of the Systemic Analysis Method on Dental Sedation for Children (소아 치과환자에 대한 진정법의 체계적 분석 방법 고찰)

  • An, Soyoun;Lee, Jewoo;Kim, Seungoh;Kim, Jongbin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.42 no.4
    • /
    • pp.331-339
    • /
    • 2015
  • The first priority of sedation for incorporative children in pediatric dentistry is a safety. Therefore, evidence-based practices in health care are needed for preventing medical accidents. In accordance with the rise of the evidence based medicine, the interest in Evidence-Based Dentistry is increasing in the field of dentistry. However, systematic research about Evidence-Based sedation in Korea has rarely been done. As such, the purpose of this systematic review is to critically analyze the available scientific literature regarding dental sedation and to seek the next developmental strategies about evidence based pediatric dental sedation. A broad search of the 5 databases of the systematic reviews manual of the National Evidence-based Healthcare Collaborating Agency in Korea were referenced: 1) Core search database- KMbase, KISS; 2) Academic information and portal; 3) the National Assembly Library; 4) DBpia, and 5) RISS. Of a total 470 themes limited to the search term of "dental sedation", in accordance with the PRISMA statement for reporting systematic reviews of health sciences interventions, a literature selection process, which includes the removal of overlapping down the flow chart, was performed. Of the remaining 31 articles, two authors read through articles independently and added or removed articles using the exclusion criteria. Finally, twenty published papers of acceptable quality were identified and reviewed. This systemic review of Korean pediatric dental sedation practices for the last twenty-five years was based on the objective criteria defined in the GRADE process and identified consistent evidence. The results were evidence of moderate quality. Therefore, more systemically well-designed clinical studies are needed about the safe use of a sedative medicines (drugs).

A New Approach to Automatic Keyword Generation Using Inverse Vector Space Model (키워드 자동 생성에 대한 새로운 접근법: 역 벡터공간모델을 이용한 키워드 할당 방법)

  • Cho, Won-Chin;Rho, Sang-Kyu;Yun, Ji-Young Agnes;Park, Jin-Soo
    • Asia pacific journal of information systems
    • /
    • v.21 no.1
    • /
    • pp.103-122
    • /
    • 2011
  • Recently, numerous documents have been made available electronically. Internet search engines and digital libraries commonly return query results containing hundreds or even thousands of documents. In this situation, it is virtually impossible for users to examine complete documents to determine whether they might be useful for them. For this reason, some on-line documents are accompanied by a list of keywords specified by the authors in an effort to guide the users by facilitating the filtering process. In this way, a set of keywords is often considered a condensed version of the whole document and therefore plays an important role for document retrieval, Web page retrieval, document clustering, summarization, text mining, and so on. Since many academic journals ask the authors to provide a list of five or six keywords on the first page of an article, keywords are most familiar in the context of journal articles. However, many other types of documents could not benefit from the use of keywords, including Web pages, email messages, news reports, magazine articles, and business papers. Although the potential benefit is large, the implementation itself is the obstacle; manually assigning keywords to all documents is a daunting task, or even impractical in that it is extremely tedious and time-consuming requiring a certain level of domain knowledge. Therefore, it is highly desirable to automate the keyword generation process. There are mainly two approaches to achieving this aim: keyword assignment approach and keyword extraction approach. Both approaches use machine learning methods and require, for training purposes, a set of documents with keywords already attached. In the former approach, there is a given set of vocabulary, and the aim is to match them to the texts. In other words, the keywords assignment approach seeks to select the words from a controlled vocabulary that best describes a document. Although this approach is domain dependent and is not easy to transfer and expand, it can generate implicit keywords that do not appear in a document. On the other hand, in the latter approach, the aim is to extract keywords with respect to their relevance in the text without prior vocabulary. In this approach, automatic keyword generation is treated as a classification task, and keywords are commonly extracted based on supervised learning techniques. Thus, keyword extraction algorithms classify candidate keywords in a document into positive or negative examples. Several systems such as Extractor and Kea were developed using keyword extraction approach. Most indicative words in a document are selected as keywords for that document and as a result, keywords extraction is limited to terms that appear in the document. Therefore, keywords extraction cannot generate implicit keywords that are not included in a document. According to the experiment results of Turney, about 64% to 90% of keywords assigned by the authors can be found in the full text of an article. Inversely, it also means that 10% to 36% of the keywords assigned by the authors do not appear in the article, which cannot be generated through keyword extraction algorithms. Our preliminary experiment result also shows that 37% of keywords assigned by the authors are not included in the full text. This is the reason why we have decided to adopt the keyword assignment approach. In this paper, we propose a new approach for automatic keyword assignment namely IVSM(Inverse Vector Space Model). The model is based on a vector space model. which is a conventional information retrieval model that represents documents and queries by vectors in a multidimensional space. IVSM generates an appropriate keyword set for a specific document by measuring the distance between the document and the keyword sets. The keyword assignment process of IVSM is as follows: (1) calculating the vector length of each keyword set based on each keyword weight; (2) preprocessing and parsing a target document that does not have keywords; (3) calculating the vector length of the target document based on the term frequency; (4) measuring the cosine similarity between each keyword set and the target document; and (5) generating keywords that have high similarity scores. Two keyword generation systems were implemented applying IVSM: IVSM system for Web-based community service and stand-alone IVSM system. Firstly, the IVSM system is implemented in a community service for sharing knowledge and opinions on current trends such as fashion, movies, social problems, and health information. The stand-alone IVSM system is dedicated to generating keywords for academic papers, and, indeed, it has been tested through a number of academic papers including those published by the Korean Association of Shipping and Logistics, the Korea Research Academy of Distribution Information, the Korea Logistics Society, the Korea Logistics Research Association, and the Korea Port Economic Association. We measured the performance of IVSM by the number of matches between the IVSM-generated keywords and the author-assigned keywords. According to our experiment, the precisions of IVSM applied to Web-based community service and academic journals were 0.75 and 0.71, respectively. The performance of both systems is much better than that of baseline systems that generate keywords based on simple probability. Also, IVSM shows comparable performance to Extractor that is a representative system of keyword extraction approach developed by Turney. As electronic documents increase, we expect that IVSM proposed in this paper can be applied to many electronic documents in Web-based community and digital library.

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

A Study on the Curriculum for Record Management Science Education - with focus on the Faculty of Cultural Information Resources, Surugadai University; Evolving Program, New Connections (기록관리학의 발전을 위한 교육과정연구 -준하태(駿河台)(스루가다이)대학(大學)의 경우를 중심(中心)으로-)

  • Kim, Yong-Won
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.1 no.1
    • /
    • pp.69-94
    • /
    • 2001
  • The purpose of this paper is to provide an overview of the current status of the records management science education in Japan, and to examine the implications of the rapid growth of this filed while noting some of its significant issues and problems. The goal of records management science education is to improve the quality of information services and to assure an adequate supply of information professionals. Because records management science programs prepare students for a professional career, their curricula must encompass elements of both education and practical training. This is often expressed as a contrast between theory and practice. The confluence of the social, economic and technological realities of the environment where the learning takes place affects both. This paper reviews the historical background and current trends of records management science education in Japan. It also analyzes the various types of curriculum and the teaching staff of these institutions, with focus on the status of the undergraduate program at Surugadai University, the first comprehensive, university level program in Japan. The Faculty of Cultural Information Resources, Surugadai University, a new school toward an integrated information disciplines, was opened in 1994, to explore the theory and practice of the management diverse cultural information resources. Its purpose was to stimulate and promote research in additional fields of information science by offering professional training in archival science, records management, and museum curatorship, as well as librarianship. In 1999, the school introduced a master program, the first in Japan. The Faculty has two departments and each of them has two courses; Department of Sensory Information Resources Management; -Sound and Audiovisual Information Management, -Landscape and Tourism Information Management, Department of Knowledge Information Resources Management; -Library and Information Management, -Records and Archives Management The structure of the entire curriculum is also organized in stages from the time of entrance through basic instruction and onwards. Orientation subjects which a student takes immediately upon entering university is an introduction to specialized education, in which he learns the basic methods of university education and study, During his first and second years, he arranges Basic and Core courses as essential steps towards specialization at university. For this purpose, the courses offer a wide variety of study topics. The number of courses offered, including these, amounts to approximately 150. While from his third year onwards, he begins specific courses that apply to his major field, and in a gradual accumulation of seminar classes and practical training, puts his knowledge grained to practical use. Courses pertaining to these departments are offered to students beginning their second year. However, there is no impenetrable wall between the two departments, and there are only minor differences with regard requirements for graduation. Students may select third or fourth year seminars regardless of the department to which they belong. To be awarded a B.A. in Cultural Information Resources, the student is required to earn 34 credits in Basic Courses(such as, Social History of Cultural Information, Cultural Anthropology, History of Science, Behavioral Sciences, Communication, etc.), 16 credits in Foreign Languages(including 10 in English), 14 credits on Information Processing(including both theory and practice), and 60 credits in the courses for his or her major. Finally, several of the issues and problems currently facing records management science education in Japan are briefly summarized below; -Integration and Incorporation of related areas and similar programs, -Curriculum Improvement, -Insufficient of Textbooks, -Lack of qualified Teachers, -Problems of the employment of Graduates. As we moved toward more sophisticated, integrated, multimedia information services, information professionals will need to work more closely with colleagues in other specialties. It will become essential to the survival of the information professions for librarians to work with archivists, record managers and museum curators. Managing the changes in our increasingly information-intensive society demands strong coalitions among everyone in cultural Institutions. To provide our future colleagues with these competencies will require building and strengthening partnerships within and across the information professions and across national borders.