• 제목/요약/키워드: School Information Publish System

검색결과 11건 처리시간 0.02초

IoT 응용을 위한 결함 포용 발행/구독 시스템의 설계 및 평가 (Design and Evaluation of a Fault-tolerant Publish/Subscribe System for IoT Applications)

  • 배인한
    • 한국멀티미디어학회논문지
    • /
    • 제24권8호
    • /
    • pp.1101-1113
    • /
    • 2021
  • The rapid growth of sense-and-respond applications and the emerging cloud computing model present a new challenge: providing publish/subscribe middleware as a scalable and elastic cloud service. The publish/subscribe interaction model is a promising solution for scalable data dissemination over wide-area networks. In addition, there have been some work on the publish/subscribe messaging paradigm that guarantees reliability and availability in the face of node and link failures. These publish/subscribe systems are commonly used in information-centric networks and edge-fog-cloud infrastructures for IoT. The IoT has an edge-fog cloud infrastructure to efficiently process massive amounts of sensing data collected from the surrounding environment. In this paper. we propose a quorum-based hierarchical fault-tolerant publish/subscribe systems (QHFPS) to enable reliable delivery of messages in the presence of link and node failures. The QHFPS efficiently distributes IoT messages to the publish/subscribe brokers in fog overlay layers on the basis of proposing extended stepped grid (xS-grid) quorum for providing tolerance when faced with node failures and network partitions. We evaluate the performance of QHFPS in three aspects: number of transmitted Pub/Sub messages, average subscription delay, and subscritpion delivery rate with an analytical model.

ICT-based Cooperative Model for Transparent and Sustainable Scholarly Publishing Ecosystem

  • Jung, Youngim;Seo, Tae-Sul
    • Journal of Contemporary Eastern Asia
    • /
    • 제21권1호
    • /
    • pp.53-71
    • /
    • 2022
  • The overall purposes of this study are to identify actions taken to counter predatory publishing practices as well as to propose an ICT-based model to detect such practices. The need to raise quantitative performance metrics to support career goals has created immense pressure on researchers to publish in the literature as frequently as possible. This "publish or perish" syndrome appears to be fueling a rise in scholarly journals and conferences that provide quicker and easier routes to publication. However, such avenues sometimes involve questionable academic practices with important ethical ramifications. One notable example is the proliferation of predatory publishing, including predatory journals and fake conferences. The widening impact of such activities is beginning to prompt academic societies, publishers, and institutions to take measures. This paper discusses the issues on predatory publishing practices, and some of the actions taken by various stakeholders to address these practices. In order to build a transparent and sustainable scholarly publishing ecosystem, this study highlights multi-dimensional and specific solutions, including reforms to research ethics codes, research management rules, and legal protection from exploitative practices. This paper proposes an ICT-based cooperative model for monitoring of predatory publishers as a potential solution to create a sustainable and transparent infrastructure for a scholarly publication system guarding against misconduct in publishing practices.

Web Service Proxy Architecture using WS-Eventing for Reducing SOAP Traffic

  • Terefe, Mati Bekuma;Oh, Sangyoon
    • 정보화연구
    • /
    • 제10권2호
    • /
    • pp.159-167
    • /
    • 2013
  • Web Services offer many benefits over other types of middleware in distributed computing. However, usage of Web Services results in large network bandwidth since Web Services use XML-based protocol which is heavier than binary protocols. Even though there have been many researches to minimize the network traffic and bandwidth usages of Web Services messages, none of them are solving problem clearly yet. In this paper, we propose a transparent proxy with cache to avoid transfer of repeated SOAP data, sent by Web Service to an application. To maintain the cache consistency, we introduce publish/subscribe paradigm using WS-Eventing between the proxy and Web Service. The implemented system based on our proposed architecture will not compromise the standards of Web Service. The evaluation of our system shows that caching SOAP messages not only reduces the network traffic but also decreases the request delays.

A wireless sensor network approach to enable location awareness in ubiquitous healthcare applications

  • Singh, Vinay Kumar;Lim, Hyo-Taek;Chung, Wan-Young
    • 센서학회지
    • /
    • 제16권4호
    • /
    • pp.277-285
    • /
    • 2007
  • In this paper, we outline the research issues that we are pursuing towards building of location aware environments for mainly ubiquitous healthcare applications. Such location aware application can provide what is happening in this space. To locate an object, such as patient or elderly person, the active ceiling-mounted reference beacons were placed throughout the building. Reference beacons periodically publish location information on RF and ultrasonic signals to allow application running on mobile or static nodes to study and determine their physical location. Once object-carried passive listener receives the information, it subsequently determines it's location from reference beacons. The cost of the system was reduced while the accuracy in our experiments was fairly good and fine grained between 7 and 12 cm for location awareness in indoor environments by using only the sensor nodes and wireless sensor network technology. Passive architecture used here provides the security of the user privacy while at the server the privacy was secured by providing the authentication using Geopriv approach. This information from sensor nodes is further forwarded to base station where further computation is performed to determine the current position of object.

한국의료패널 데이터를 활용한 공동연구 동향 분석: 공동 연구자들 연결망 구조를 중심으로 (A Study on the Trend of Collaborative Research Using Korean Health Panel Data: Focusing on the Network Structure of Co-authors)

  • 엄혜미;이현주;최승은
    • Journal of Information Technology Applications and Management
    • /
    • 제25권4호
    • /
    • pp.185-196
    • /
    • 2018
  • This study investigates the social network among authors to improve the quality of Panel researches. Korea Health Panel (KHP), implemented by the collaborative work between KIHASA (Korea Institute for Health and Social Affairs) and NHIC (National Health Insurance Service) since 2008, provides a critical infrastructure for policy making and management for insurance system and healthcare service. Using bibliographic data extracted from academic databases, eighty articles were extracted in domestic and international journals from 2008 to 2014, April. Data were analyzed by NetMiner 4.0, social network analysis software, to identify the extent to which authors are involved in healthcare use research and the patterns of collaboration between them. Analysis reveals that most authors publish a very small number of articles and collaborate within tightly knit circles. Centrality measures confirm these findings by revealing that only a small percentage of the authors are structurally dominant, and influence the flow of communication among others. It leads to the discovery of dependencies between the elements of the co-author network such as affiliates in health panel communities. Based on these findings, we recommend that Korea Health Panel could benefit from cultivating a wider base of influential authors and promoting broader collaborations.

ESG경영 공시전환에 대응하는 중대토픽 공시방법 연구-석유와 가스산업 중심으로 (A Study on the Disclosure Method of Major Topics in Response to the ESG Management Disclosure Transition-Focused on the Oil and Gas Industry)

  • 박태양
    • 산업경영시스템학회지
    • /
    • 제45권1호
    • /
    • pp.53-70
    • /
    • 2022
  • Recently, due to the change to SASB(Sustainability Accounting Standards Board) and GRI(Global Reporting Initiative) Standards 2021, the paradigm for non-financial information disclosure is changing significantly, with the number of ESG topics and indicators that must be disclosed by industry from an autonomous material topic selection method. This study revealed that the number of compulsory topics in the oil and gas industry by GRI standards 2021 is up to 2.4 times higher than the average number of material topics disclosed when domestic companies publish sustainability reports using GRI Standards 2020. In the oil and gas industry, I analyzed the similarities and differences between the GRI standards 2021 and the ESG topics covered by SASB by environmental, social, economic, and governance areas. In addition, the materiality test process, which is different in GRI standards 2021, is introduced, and the issues included in the following 10 representative ESG-related initiatives are summarized into 62 and suggested improvement plans for materiality test used in the topic pool.

나이스의 학생개인정보서비스 제공을 위한 인식조사 (The Development of Policy toward the Students' Access to Their Own Information on NEIS)

  • 장순선;이옥화
    • 정보교육학회논문지
    • /
    • 제14권2호
    • /
    • pp.261-271
    • /
    • 2010
  • 학부모들은 나이스 서비스를 통해 자녀에 관한 정보를 온라인으로 직접 열람할 수 있으나, 정보 생성의 주체인 학생은 온라인을 통해 직접 자신에 관한 정보를 열람할 수 없다. 이에 학생들은 온라인으로 자기 정보에 직접 접속할 수 있게 해 달라는 요구를 인권위원회를 통해 제기하였다. 본 연구의 목적은 나이스에서의 학생이 자기 정보를 직접 접근할 수 있는 서비스를 제공하는 것이 교육의 이해 당사자들 간에 어떻게 받아들여지는지, 또 방법은 어떻게 해야 하는지에 관한 인식을 조사 분석하여 정책 결정의 방향제시를 하고자 함이다. 학생의 정보접근 서비스의 이해당사자들은 학생, 교사, 학부모들로 한정하여 이들의 학생의 정보접근 서비스에 관한 인식을 수집 분석하고 또 관련 법령을 검토하였다. 학부모, 학생 및 교사의 인식조사는 2009년 5월과 6월에 각 그룹 당 3,300명씩 온라인 설문을 통해 수집 조사하였다. 분석 결과, 학생의 자기정보 열람서비스에 관하여 학생, 학부모, 교사 순으로 찬성하였고, 정보 입력을 담당해야 하는 교사들도 당초의 우려와 달리 긍정적이었다. 학생정보제공서비스의 운영은 학생정보의 개인정보열람권이 개인의 기본권이므로 모든 학생에게 제공되어야 하지만, 운영상 현실적인 이유로 순차적으로 해야 한다면 학생과 학부모의 의견에 따라 중고등학교부터 시작하는 것을 원하는 것으로 나타났다. 제공 서비스내용에 관해서는 학부모서비스에서 제공하는 정보 중 카운셀링 정보를 제외한 정보제공을 원하는 것으로 나타났다.

  • PDF

연관규칙 마이닝에서의 동시성 기준 확장에 대한 연구 (An Investigation on Expanding Co-occurrence Criteria in Association Rule Mining)

  • 김미성;김남규;안재현
    • 지능정보연구
    • /
    • 제18권1호
    • /
    • pp.23-38
    • /
    • 2012
  • 온라인 쇼핑몰은 인터넷을 통해 손쉽게 접근이 가능하기 때문에, 최초 구매의사가 발생한 시점으로부터 이에 대한 실제 구매가 실현되기까지의 기간이 오프라인 쇼핑몰에 비해 비교적 짧게 나타난다. 즉 오프라인 쇼핑몰의 경우 구매희망 물품을 바로 구매하기 보다는 몇 개의 물품들을 모아서 구매하는 행태가 일반적이다. 하지만, 인터넷 쇼핑몰의 경우 단 하나의 물품만을 포함하고 있는 주문이 전체 주문의 절반 이상을 차지한다. 따라서 온라인 쇼핑몰 데이터의 장바구니 분석에 전통적 데이터마이닝 기법을 그대로 적용할 경우, Null Transaction의 수가 지나치게 많음으로 인해 합리적 수준의 지지도(Support)를 만족시키는 규칙을 찾는 것이 매우 어렵게 된다. 이러한 이유로 온라인 데이터를 사용한 많은 연구는 동시성 기준을 여러 방법으로 확장하여 사용하였는데, 이들 동시성 기준은 명확한 근거나 합의 없이 연구자의 상황에 따라 임의로 선택된 측면이 있다. 따라서 본 연구에서는 온라인 마켓 분석에 적용되는 구매의 동시성 기준을 정확도 측면에서 평가함으로써, 구매의 동시성 기준 선정을 위한 근거를 제시하고자 한다. 또한 동시성 기준의 정확도가 고객의 평균 구매간격에 따라 상이하게 나타나는 것을 파악하여, 향후 고객의 특성에 따른 차별화된 추천 시스템 구축을 위한 기본 방향을 제시하고자 한다. 이를 위해 국내 대형 인터넷 쇼핑몰의 최근 2년간 실제 거래 내역을 대상으로 실험을 수행하였으며, 실험 결과 단골 고객의 구매 추천을 위한 분석의 경우 추천 범위와 분석 데이터의 동시성 기준을 맞추어 연관규칙을 도출하는 것이 바람직하며, 비단골 고객의 경우 대부분의 추천 범위에 대해서 분석 데이터의 동시성 기준을 비교적 길게 설정하여 연관규칙을 도출하는 것이 바람직한 것으로 나타났다.

CIA-Level 기반 보안내재화 개발 프레임워크 (CIA-Level Driven Secure SDLC Framework for Integrating Security into SDLC Process)

  • 강수영;김승주
    • 정보보호학회논문지
    • /
    • 제30권5호
    • /
    • pp.909-928
    • /
    • 2020
  • 미국 정부는 1970년대 초반부터 모의해킹만으로는 제품의 보안 품질을 향상시킬 수 없다는 것을 인지하기 시작하였다. 모의해킹팀의 역량에 따라 찾을 수 있는 취약점이 달라지며, 취약점이 발견되지 않았다고 해서 해당 제품에 취약점이 없는 것은 아니기 때문이다. 제품의 보안 품질을 향상시키기 위해서는 결국 개발 프로세스 자체가 체계적이고 엄격하게 관리되어야 함을 깨달은 미국 정부는 1980년대부터 보안내재화(Security by Design) 개발 방법론 및 평가 조달 체계와 관련한 각종 표준을 발표하기 시작한다. 보안내재화란 제품의 요구사항 분석 및 설계 단계에서부터 일찍 보안을 고려함으로써 제품의 복잡도(complexity)를 감소시키고, 궁극적으로는 제품의 신뢰성(trustworthy)을 달성하는 것을 의미한다. 이후 이러한 보안내재화 철학은 Microsoft 및 IBM에 의해 Secure SDLC라는 이름으로 2002년부터 민간에 본격적으로 전파되기 시작하였으며, 현재는 자동차 및 첨단 무기 체계 등 다양한 분야에서 활용되고 있다. 하지만 문제는 현재 공개되어 있는 Secure SDLC 관련 표준이나 가이드라인들이 매우 일반적이고 선언적인 내용들만을 담고 있기 때문에 이를 실제 현장에서 구현하기란 쉽지 않다는 것이다. 따라서 본 논문에서 우리는 Secure SDLC를 기업체가 원하는 수준에 맞게 구체화시키는 방법론에 대해 제시한다. 우리가 제안하는 CIA(functional Correctness, safety Integrity, security Assurance)-Level 기반 보안내재화 프레임워크는 기존 Secure SDLC에 증거 기반 보안 방법론(evidence-based security approach)을 접목한 것으로, 우리의 방법론을 이용할 경우 첫째 경쟁사와 자사간의 Secure SDLC 프로세스의 수준 차이를 정량적으로 분석할 수 있으며, 둘째 원하는 수준의 Secure SDLC를 구축하는데 필요한 상세한 세부 활동 및 산출해야 할 문서 등을 쉽게 도출할 수 있으므로 실제 현장에서 Secure SDLC를 구축하고자 할 때 매우 유용하다.

다양한 다분류 SVM을 적용한 기업채권평가 (Corporate Bond Rating Using Various Multiclass Support Vector Machines)

  • 안현철;김경재
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.