• 제목/요약/키워드: School Building

검색결과 4,237건 처리시간 0.029초

건축자재에 의한 실내 오존제거 및 제어에 대한 고찰 (Consideration of Ozone Removal and Control in Built Environment by Building Materials)

  • 정옥영;정수광;김준현;김수민
    • 설비공학논문집
    • /
    • 제24권6호
    • /
    • pp.467-475
    • /
    • 2012
  • Recently, residents have been spending almost 90% of their time indoors, which presents a higher risk from inhalation of pollutants than when spending time outdoors. Therefore, controlling indoor air quality became important. It is reported that the lung diseases and mortality for occupants are increased when there is high density of ozone which is one of the pollutants among the indoor air. In addition, the reactions between ozone and building materials produce VOCs and formaldehyde. The studies to eliminate the ozone by building materials have been actively investigated. However, ozone removal and secondary pollutants from ozone reactions with building materials have not been reported in Korea. For this reason, the aim of this study is to introduce ozone removal by HVAC filters, various building materials, and eco-friendly building materials including the quantity of secondary pollutant emissions.

노후 학교건물의 유지관리비용 정책 평가를 위한 시스템 다이내믹스 모델 (A System Dynamics Model for Evaluation of Maintenance Cost Policy in Deteriorated School Building)

  • 강수현;김상용
    • 대한건축학회논문집:구조계
    • /
    • 제35권12호
    • /
    • pp.181-188
    • /
    • 2019
  • The maintenance of school building is pivotal issue. However, it is difficult to obtain basic analysis data for LCC(Lifecycle Cost) analysis and maintenance planning of school building. Therefore, this study proposed System Dynamics(SD) techniques to make maintenance decisions for school building. The interaction between the major parameters related to the aging of a building, maintenance activities, and cost were expressed in Causal Loop Diagram. Based on this, the formula for the relationship between causal maps was defined and converted to Stock and Flow Diagram. Through the completed SD model the 50-year plan of 214 educational building were tested by considered in account budget, maintainability, and budget allocation opinions. As a result, the integrated SD model demonstrated that it can support strategic decision making by identifying the status class and LCC behavior of school buildings by scenario. According to the scenario analysis, the rehabilitation action of preventive maintenance that primarily repairs the buildings in condition grade C showed the best performance improvement effect relative to the cost. Therefore, if the proposed SD model is expanded to consider the effects of other educational policies, the crucial performance improvement budget can be estimated in the long-term perspective.

노후 학교건물의 창호 교체에 따른 부하분석 (Analysis of Heating and Cooling Load Profile According to the Window Retrofit in an Old School Building)

  • 이예지;김주욱;송두삼
    • 설비공학논문집
    • /
    • 제29권9호
    • /
    • pp.455-462
    • /
    • 2017
  • The purpose of this study is to analyze heating and cooling load variation due to envelope retrofits in an old school building. In a previous study, envelope retrofit of an old school building resulted in annual energy consumption reduction. However, cooling energy consumption increased with the envelope retrofit. This is because of high internal heat generation rates in school buildings and internal heat cannot escape through windows or walls when the envelope's thermal performance improves. To clarify this assumption, thermal performance changes due to envelope retrofits were analyzed by simulation. Results revealed indoor temperature and inner window surface temperature increased with high insulation level of windows. Indoor heat loss through windows by conduction, convection and radiation decreased and resulted in an increase of cooling load in an old school building. From results of this study, energy saving impact of envelope retrofits in an old school building may not be significant because of high internal heat gain level in school buildings. In case of replacing windows in school buildings, local climate and internal heat gain level should be considered.

학교 건축물 내진보강 시공현장 관리를 위한 가이드라인 개발 및 적용에 관한 연구 (Development and Application of Guideline for Construction Management of School Building Seismic Retrofit)

  • 황은아;이병호;박구병
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.36-37
    • /
    • 2020
  • The government seismic retrofit project for educational facilities is progressing more actively due to the 2018 Pohang earthquake. It is most important that seismic retrofit constructions are conformed to seismic design to achieve the desired purpose of the project as reduce direct damage caused by earthquake. However, the construction supervision system is not mandatory for the retrofit construction site of small buildings including school buildings according to applicable laws and regulations. The purpose of this study was to develop a guide for constructions management of school building seismic retrofit. In order to achieve this goal, the survey on the construction site was conducted and various problems related to the construction site of school building seismic retrofit was derived Additionally, the systematic checklist was presented according to the user and seismic reinforcement method.

  • PDF

Numerical study for downburst wind and its load on high-rise building

  • Huang, Guoqing;Liu, Weizhan;Zhou, Qiang;Yan, Zhitao;Zuo, Delong
    • Wind and Structures
    • /
    • 제27권2호
    • /
    • pp.89-100
    • /
    • 2018
  • 3D simulations based on an impinging jet were carried out to investigate the flow field of a steady downburst and its effects on a high-rise building by applying the SST k-${\omega}$ turbulence model. The vertical profile of radial wind speed obtained from the simulation was compared with experimental data and empirical models in order to validate the accuracy of the present numerical method. Then wind profiles and the influence of jet velocity and jet height were investigated. Focusing on a high-rise building, the flow structures around the building, pressure distributions on the building surfaces and aerodynamic forces were analyzed in order to enhance the understanding of wind load characteristics on a high-rise building immersed in a downburst.

Particle Image Velocimetry Measurement of Unsteady Turbulent Flow around Regularly Arranged High-Rise Building Models

  • Sato, T.;Hagishima, A.;Ikegaya, N.;Tanimoto, J.
    • 국제초고층학회논문집
    • /
    • 제2권2호
    • /
    • pp.105-113
    • /
    • 2013
  • Recent studies proved turbulent flow properties in high-rise building models differ from those in low-rise building models by comparing turbulent statistics. Although it is important to understand the flow characteristics within and above high-rise building models in the study of urban environment, it is still unknown and under investigation. For this reason, we performed wind tunnel experiment using Particle Image Velocimetry (PIV) to investigate and identify the turbulent flow properties and characteristic flow patterns in high-rise building models. In particular, we focus on instantaneous flow field near the canopy and extracted flow field when homogeneous flow field were observed. As a result, six characteristic flow patterns were identified and the relationship between these flow patterns and turbulent organized structure were shown.

External exposure specific analysis for radiation worker in reuse of containment building for Kori Unit 1

  • Byon, Jihyang;Park, Sangjune;Kim, Yangjin;Ahn, Seokyoung
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1781-1788
    • /
    • 2022
  • The containment building Kori Unit 1 may require sequential steps for full decommissioning. This study assumes that the containment building is to be used as an auxiliary building that handles nuclear power systems and materials during decommissioning before conversion into a greenfield. Through the derivation of guidelines and dose evaluation, it was confirmed whether the radiation workers were satisfied with the ALARA decision. The specific modeling of the external radiation exposure was performed based on the facility investigation procedures. The external radiation specific derived concentration guideline levels (DCGLs) for radiation workers in containment building were obtained using the RESRAD-BUILD code and were applied to the VISIPLAN 3D ALARA Planning Tool code to calculate the working dose and check worker safety. The derivation of site-specific and realistic DCGLs and dose evaluation via 3D modeling can contribute to the scenario development for the decommission and remediation of containment building.

현장타설 끼움 전단벽 및 철골가새를 활용한 기존 학교 건물의 내진보강 (Seismic Retrofit of an Existing School Building using CIP-Infilled Shear Walls and Steel Braces)

  • 윤길호;김성호;김용철;윤현도
    • 교육시설 논문지
    • /
    • 제19권4호
    • /
    • pp.21-28
    • /
    • 2012
  • This study proposes a procedure for evaluating the seismic performance and retrofit of a typical reinforced building (R/C) school buildings contructed in the 1980s. The procedure is derived from the Japanese Standard for Evaluation of Seismic Capacity of Existing Reinforced Concrete Buildings and Nonlinear Static Procedure (NSP) specified in Federal Emergency Management Agency (FEMA 356). In this study, the Japanese Standard was applied for evaluating the additionally required seismic performance in the existing school building. Cast-in-place (CIP) reinforced concrete infill walls and steel braces were used to seismically retrofit the existing school building located in the region of Hongsung in Chungnam. In the pushover analysis, i.e NSP, the hinge properties of columns, beams, infill walls and steel braces were carefully calibrated based on the existing experiment results in the available literatures. The predicted seismic performance for the retrofitted building was compared to that for the virgin building. Based on the seismic evaluation with the Japanese Standard and the FEMA 356 criteria, the addition of CIP reinforced concrete infill walls and steel braces have superior constructablility and can improve effectively the seismic performance of the existing school buildings constructed in 1980s.

Wind Effects on Tall Buildings with a Porous Double-Skin Façade

  • Shengyu Tian;Cassandra Brigden;Caroline Kingsford;Gang Hu;Robert Ong;K.C.S. Kwok
    • 국제초고층학회논문집
    • /
    • 제11권4호
    • /
    • pp.265-276
    • /
    • 2022
  • Double-Skin Facades (DSF) on tall buildings are becoming increasingly common in urban environments due to their ability to provide architectural merit, passive design, acoustic control and even improved structural efficiency. This study aims to understand the effects of porous DSF on the aerodynamic characteristics of tall buildings using wind tunnel tests. High Frequency Force Balance and pressure tests were performed on the CAARC standard tall building model with a variable porous DSF on the windward face. The introduction of a porous DSF did not adversely affect the overall mean forces and moments experienced by the building, with few differences compared to the standard tall building model. There was also minimal variation between the results for the three porosities tested: 50%, 65% and 80%. The presence of a full-height porous DSF was shown to effectively reduce the mean and fluctuating wind pressure on the side face of the building by about 10%, and a porous DSF over the lower half height of the building was almost as effective. This indicates that the porous DSF could be used to reduce the design load on cladding and fixtures on the side faces of tall buildings, where most damage to facades typically occurs.