• 제목/요약/키워드: Schlieren method

검색결과 88건 처리시간 0.027초

디지털 이미지 법을 이용한 가솔린 분무의 유동 특성에 관한 연구 (A Study on the Flow Characteristics of Gasoline Spray using Digital Image Processing)

  • 이창식;이기형;전문수;김영호
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.219-227
    • /
    • 1998
  • This paper describes the fuel spray characteristics of gasoline port injectors such as the breakup procedures of liquid fuel, breakup and extinction behaviors of fuel spray at nozzle tip, time history of SMD and velocity distribution of fuel spray in the direction of fuel stream. Pintle-type gasoline fuel injector was used to analyze mentioned spray characteristics. In order to visualize the fuel spray behaviors and to measure the droplet mean diameter and velocities of spray droplets, the Schlieren method, digital image processing and auto-correlation PIV were applied in this study. In addition, the spray characteristics according to the variation of time were considered. The results of fuel spray show that the liquid sheet breakup starts at 10mm downstream actively. The flying time is approximately 4msec between 50mm and 80mm down the nozzle tip. Also, SMD of fuel spray, the number of droplets and fuel velocity distribution at each point of downstream are discussed.

  • PDF

고압분사 시 연료분무 특성에 관한 연구 (Fuel Spray Characteristics in the High Pressure Injection Process)

  • 안재현;김형모;신명철;김세원
    • 한국분무공학회지
    • /
    • 제8권4호
    • /
    • pp.31-38
    • /
    • 2003
  • Constant volume combustion chamber has been designed to investigate diesel spray characteristics with Common-Rail injection system to realize high pressure injection. In this study, two methods of measurements, Schlieren shadowgraphy and Mie scattering imaging method ate applied experimentally to study spray form and liquid phase zone in high pressure, high temperature conditions. Diesel fuel is injected at the point which ignited mixture gas is completely burned. The effect of injection pressure, injector hole diameter, ambient gas temperature and density are investigated experimentally.

  • PDF

Petal 노즐로부터 방출되는 초음속 자유제트 유동에 관한 연구 (A Study of the Supersonic Free Jet Discharging from a Petal Nozzle)

  • 이준희;김중배;김희동
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.109-112
    • /
    • 2002
  • The supersonic jet discharging from a petal nozzle is known to enhance mixing effect with the surrounding gas because it produces strong longitudinal vortices due to the velocity difference from both the major and minor axes of petal nozzle. In the present study, the supersonic free jet discharging from the petal nozzle is investigated experimentally. The nozzles used are 4, 6, and 8 lobed petal nozzles with a design Mach number of 1.7, and the flow fields are compared with a circular nozzle with the same design Mach number. The pitot impact pressures are measured using a fine pilot probe. The flow fields are visualized using a Schlieren optical method. The results show that the petal nozzle has more increased supersonic length compared with the circular jet.

  • PDF

직접분사 CNG 연료의 분사특성에 관한 연구 (A Study on the Injection Characteristics of Direct Injection CNG Fuel)

  • 이성욱;;;김인구;강호인
    • 한국수소및신에너지학회논문집
    • /
    • 제25권6호
    • /
    • pp.643-647
    • /
    • 2014
  • Two types of fuel supply method ar used in CNG vehicles. One is premixed ignition and the other is gas-jet ignition. In premixed ignition, the fuel is introduced with intake air so that homogeneous air-fuel mixture may form. The ignitability of this method depends on the global equivalence ratio. In gas-jet ignition, CNG is introduced directly into the engine combustion chamber. The overall mixture is stratified by retarded fuel injection. In this study, a visualization technique was employed to obtain fundamental properties regarding overall mixture formation of direct injected CNG fuel inside a constant volume chamber. Jet angles, penetrations and projected jet area with respect to ambient pressure are investigated. The penetration decreases apparently and the time reaching the CVC wall was delayed as the chamber pressure increases. This is caused by the higher inertia of the fluid elements that the injected fluid must accelerate and push aside. It is same to liquid fuel such as diesel and gasoline, but this phenomenon is far more prominent for the gaseous fuel.

메탄-산소 층류화염전파속도 측정 (Determination of Laminar Burning Velocity in Premixed Oxy-Methane Flames)

  • 오정석;노동순;이은경;홍성국
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.258-262
    • /
    • 2011
  • 실험용 분젠 연소기를 사용하여 예혼합된 메탄-산소 층류화염전파속도를 연구하였다. 이를 위해 $CH^*$ 자발광 측정기법과 슐리렌 사진술이 사용되었다. 실험결과는 CHEMKIN 3.7을 이용한 수치해석 결과와 비교하였다. 층류화염전파속도를 측정하기 위하여 층류여역 내에서 전체 당량비는 0.5에서 2.0까지 조절하였다. 동축 화염에서 화염전파속도는 각도측정법을 사용하였으며 슐리렌 사진에서는 3.1 m/s로 $CH^*$ 자발광 사진에서는 2.9 m/s로 측정되었다.

  • PDF

에멀젼연료 충돌분무의 거동특성에 관한 연구 (Study of Behavior Characteristics of Impinging Spray of Emulsified Fuel)

  • 염정국;김학민
    • 대한기계학회논문집A
    • /
    • 제39권9호
    • /
    • pp.909-916
    • /
    • 2015
  • 본 연구는 디젤-과산화수소 에멀젼연료의 충돌분무를 대상으로 과산화수소의 혼합비가 증발분무 거동특성에 미치는 영향을 조사하였다. 에멀젼연료의 증발을 위해 온도조절이 가능한 가열판을 사용하여 온도를 $150^{\circ}C$, $200^{\circ}C$$250^{\circ}C$로 각각 설정하였고, 연료 분사압력을 400bar, 600bar, 800bar 및 1000bar로 설정하여 분사압력이 에멀젼연료의 증발특성에 미치는 영향을 확인하였다. 에멀젼연료의 혼합을 위 한 계면활성제로 span80과 tween80을 9:1의 비율로 혼합하여 에멀젼연료 전체 체적의 3%로 고정하였고 과산화수소의 혼합비율을 EF(Emulsified Fuel)0, EF2, EF12 및 EF22로 설정하여 디젤연료와 혼합하였다. 또한 에멀젼연료 증발 충돌분무의 가시화를 위해 슐리렌방법을 적용하였다. 본 연구의 결과로서 충돌하는 가열판의 온도와 분사압력이 높을수록 에멀젼연료 증발 촉진으로 연료 기상의 확산이 활발해지는 것을 알 수 있었다. 이러한 결과로부터 실제엔진에 에멀젼연료를 사용할 경우 연료 내 과산화수소 증발에 의한 연소실 온도 저하효과와 함께 보다 신속한 혼합기 형성은 엔진배출물의 감소를 일으키는 것으로 기대된다.

직분식 가솔린 인젝터의 흡입 행정 분사시의 연료 거동 및 혼합기 분포 특성에 관한 연구 (A Study on the Fuel Behavior and Mixture Formation in the Early Injection Timing of GDI Injector)

  • 이창희;이기형;배재일;백승국
    • 대한기계학회논문집B
    • /
    • 제26권8호
    • /
    • pp.1138-1144
    • /
    • 2002
  • Recently GDI(Gasoline Direct Injection) engine is spot-lighted to achieve higher thermal efficiency under partial loads and better performance at full loads. To realize this system, it is essential to make both stratified combustion and homogeneous combustion. Spray pattern must be optimized according to injection timing because ambient pressure in combustion chamber is varied with crank angle. In this experimental study, two types of visualization system such as laser scattering method and schlieren method were developed to clarity the spray behavior during on intake stroke. As the ambient pressure increases, thepenetration length and spray angle show a tendancy to decrease due to rising resistance caused by the drag force of the ambient air. Distribution of injected fuel on intake stroke has a significant effect on homogeneous mixture in the cylinder. These results provide the information on macroscopic wall-wet growth in the cylinder and design factors for developing GDI injector.

과팽창 노즐 내에 발생하는 FSS-RSS 현상에 관한 실험적 및 수치해석적 연구 (Experimental and Computational Studies of FSS-RSS Phenomena in an Over-Expanded Nozzle)

  • 이종성;김희동
    • 한국가시화정보학회지
    • /
    • 제8권3호
    • /
    • pp.56-62
    • /
    • 2010
  • The interaction patterns between shock wave and boundary layer in a rocket nozzle are mainly classified into two categories, FSS(Free Shock Separation) and RSS(Restricted Shock Separation), both of which are associated with the thrust characteristics as well as side loads of the engine. According to the previous investigations, strong side loads of the engine are produced during the period of transition from FSS to RSS or vice versa. The present work aims at investigating the unsteady behavior of the separation shock waves in a two-dimensional supersonic nozzle, using experimental method and CFD. Schlieren optical method was employed to visualize the time-mean and time-dependent shock motions in the nozzle. The unsteady, compressible N-S equations with SST K-$\omega$ turbulence closure were solved using a fully implicit finite volume scheme. The results obtained show the separation shock motions during the transition of the interaction pattern.

커먼레일 분사 시스템에서 DME-LPG 혼합연료의 분무거동에 관한 연구 (A Study on Spray Behavior of DME-LPG Blended Fuels in a Common-rail Injection System)

  • 김웅일;우승철;이창식;이기형
    • 한국분무공학회지
    • /
    • 제20권1호
    • /
    • pp.35-42
    • /
    • 2015
  • This study is to investigate the spray behavior of DME-LPG blended fuels in common rail injection system for diesel engines. The visualization experiment was performed to analyze the macroscopic spray behavior of test fuels. In addition, the experiment using BOS(Background Oriented Schlieren) method is performed to compare liquid phase and gas phase. The test fuels are injected in high pressure chamber. The ambient pressure of high pressure chamber was formed by nitrogen gas. Spray tip penetration, spray cone angle and spray area were measured using high speed camera. SMD(Sauter Mean Diameter) and spray particle velocity were measured using the PDPA(Phase Doppler Particle Analyzer) system to analyze the microscopic properties of test fuels. The results of this experiment showed that spray tip penetration, spray cone angle and spray area of DME-LPG fuels are similar to those of DME fuel. When compared to results of experiment using BOS, significant differences of spray tip penetrations, spray cone angle and spray area are showed because of gas phase. The results of experiment using BOS method showed higher values. SMD of DME-LPG blended fuels is smaller than that of DME fuel. Velocity of DME-LPG blended fuels is faster than that of DME fuel.

에멀젼연료 거동특성에 관한 실험 및 수치해석 연구 (Study of Experimental and Numerical Analysis on Behavior Characteristics of Emulsified Fuel)

  • 염정국
    • 동력기계공학회지
    • /
    • 제21권4호
    • /
    • pp.34-41
    • /
    • 2017
  • Diesel engines with compression-ignition type have superior thermal efficiency, durability and reliability compared to gasoline engine. To control emitted gas from the engines, it can be applied to alternative fuel without any modification to the engine. Therefore, in this study, as a basic study for applying emulsified fuel to the actual diesel engine, analysis of spray behavior characteristics of emulsified fuel was carried out simultaneously by experimental and numerical method. The emulsified fuel consist of diesel, hydrogen peroxide, and surfactant. The surfactant for manufacturing emulsified fuel is comprised of span 80 and tween 80 mixed as 9:1 and fixed with 3% of the total volume of the emulsified fuel. In addition, six kinds of emulsified fuel(EF0, EF2, EF12, EF22, EF32, and EF42) were manufactured according to the mixing ratio of hydrogen peroxide. The droplet and spray experiments were performed to observe the behavior characteristics of the emulsified fuel. The numerical analysis was carried out using ANSYS CFX to confirm the microscopic behavior characteristics. Consequently, rapid mixture formation can be expected due to evaporation of hydrogen peroxide in emulsified fuel, and it is confirmed that Reitz&Diwakar breakup model is most suitable as breakup model to be applied to the numerical analysis.