• Title/Summary/Keyword: Schiff's base

Search Result 77, Processing Time 0.025 seconds

Inorganic polymers of metal (Ⅱ) ions with Schiff's Base of quinizarin-ethylenediamine (Quinizarin-ethylenediamine의 Schiff's Base 와 금속 (Ⅱ) 이온이 만드는 Coordination polymer의 합성에 관하여)

  • Joon Suk Oh;Won Suk Kwak
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.29-36
    • /
    • 1969
  • lnorganic polymers, which are composed of metal (Ⅱ) ions and Schiff's Base of quinizarin-ethylenediamine, have been prepared. In order to find out proper conditions for the reaction, some investigations have been carried out to test the effect of pH, kind of solvent and the state of reagent. As a result, the highest yield occurred near pH 7 and it was found that there were not great difference in the kind of solvent and the state of reagent we had used. Most of the polymers are seemed not to be those we have attempted to prepare. They are found to be coordination polymers which have rather low molecular weight.

  • PDF

Synthesis and Crystal Structures of Copper(II) Complexes with Schiff Base Ligands: [Cu2(acpy-mdtc)2(HBA)(ClO4)]·H2O and [Cu2(acpy-phtsc)2(HBA)]·ClO4

  • Koo, Bon Kweon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3233-3238
    • /
    • 2013
  • Two new Cu(II) complexes, $[Cu_2(acpy-mdtc)_2(HBA)(ClO_4)]{\cdot}H_2O$ (1) (acpy-mdtc- = 2-acetylpyridine S-methyldithiocarbamate and $HBA^-$ = benzilic acid anion) and $[Cu_2(acpy-phtsc)_2(HBA)]{\cdot}ClO_4$ (2) (acpy-$phtsc^-$ = 2-acetylpyridine 4-phenyl-3-thiosemicarbazate) have been synthesized and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and single crystal X-ray diffraction. The X-ray analysis reveals that the structures of 1 and 2 are dinuclear copper(II) complexes bridged by two thiolate sulfur atoms of Schiff base ligand and bidentate bridging $HBA^-$ anion. For 1, each of the two copper atoms has different coordination environments. Cu1 adopts a five-coordinate square-pyramidal with a $N_2OS_2$ donor, while Cu2 exhibits a distorted octahedral geometry in a $N_2O_2S_2$ manner. For 2, two Cu(II) ions all have a five-coordinate square-pyramidal with a $N_2OS_2$ donor. In each complex, the Schiff base ligand is coordinated to copper ions as a tridentate thiol mode.

Morphological study of porous aromatic schiff bases as a highly effective carbon dioxide storages

  • Rehab Hammoda;Naser Shaalan;Mohammed H. Al-Mashhadani;Dina S. Ahmed;Rahimi M. Yusop;Ali H. Jawad;Emad Yousif
    • Analytical Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.236-249
    • /
    • 2023
  • Carbon dioxide (CO2) capture and storage is a critical issue for mitigating climate change. Porous aromatic Schiff base complexes have emerged as a promising class of materials for CO2 capture due to their high surface area, porosity, and stability. In this study, we investigate the potential of Schiff base complexes as an effective media for CO2 storage. We review the synthesis and characterization of porous aromatic Schiff bases materials complexes and examine their CO2 sorption properties. We find that Schiff base complexes exhibit high CO2 adsorption capacity and selectivity, making them a promising candidate for use in carbon capture applications. Moreover, we investigate the effect of various parameters such as temperature, and pressure on the CO2 adsorption properties of Schiff base complexes. The Schiff bases possessed tiny Brunauer-Emmett-Teller surface areas (4.7-19.4 m2/g), typical pore diameters of 12.8-29.43 nm, and pore volumes ranging from 0.02-0.073 cm3/g. Overall, our results suggest that synthesized complexes have great potential as an effective media for CO2 storage, which could significantly reduce greenhouse gas emissions and contribute to mitigating climate change. The study provides valuable insights into the design of novel materials for CO2 capture and storage, which is a critical area of research for achieving a sustainable future.

Synthesis, Characterization and Spectrophotometric Studies of Seven Novel Antibacterial Hydrophilic Iron(II) Schiff Base Amino Acid Complexes

  • Shaker, Ali M.;Nassr, Lobna A.E.;Adam, Mohamed S.S.;Mohamed, Ibrahim M.A.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.560-567
    • /
    • 2013
  • A series of new Iron(II) Schiff base amino acid complexes derived from the condensation of amino acid and sodium 2-hydroxybenzaldehyde-5-sulfonate have been synthesized. The complexes were characterized by elemental, electronic, IR spectral analyses and conductance measurements. The stability and solubility of the prepared complexes were determined. Two spectral methods used to determine the stoichiometry of the prepared complexes which exhibited divalent tridentate coordination and formed chelates of octahedral structures. The antibacterial activity of the prepared complexes has been tested against Bacillus cereus, Pseudomonas aeruginosa and Micrococcus bacteria. The effect of HCl on investigated complexes studied spectrophotometrically.

Synthesis of Optically Active 1-Aminoalkylphosphonic Acids (光學 活性을 갖는 1-Aminoalkylphosphonic Acid 의 合成)

  • Sung Ki Cho;Yong Joon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.257-262
    • /
    • 1989
  • An efficient asymmetric synthesis of (+)-1-aminoalkyphosphonic acids is achieved by alkylation of Schiff base, prepared from diethylaminomethylphosphonate and (S)-(-)-2-hydroxypinan-3-one as a chiral reagent, and a new method of column chromatographic resolution of (${\pm}$)-1-aminobenzylphosphonic acid via its Schiff base with (S)-(-)-2-hydroxypinan-3-one is described.

  • PDF

Synthesis and Characterization of New Transition Metal Complexes of Schiff-base Derived from 2-Aminopyrimidine and 2,4-Dihydroxybenzaldehyde and Its Applications in Corrosion Inhibition (2-Aminopyrimidine 및 2,4-Dihydoxybenzaldehyde 치환체인 Schiff-염기의 전이금속 착물에 대한 합성 및 특성 그리고 부식방지에의 응용)

  • Ouf, Abd El-Fatah M.;Ali, Mayada S.;Soliman, Mamdouh S.;El-Defrawy, Ahmed M.;Mostafa, Sahar I.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.4
    • /
    • pp.402-410
    • /
    • 2010
  • New complexes cis-[$Mo_2O_5(Hapdhba)_2$], trans-[$UO_2(Hapdhba)_2$], [Pd(Hapdhba)Cl($H_2O$)], [Pd(bpy)(Hapdhba)]Cl, [Ag(bpy)(Hapdhba)], [$Ru(Hapdhba)_2(H_2O)_2$], [$Rh(Hapdhba)_2Cl(H_2O)$] and [Au(Hapdhba)$Cl_2$] are reported, where $H_2$apdhba is the Schiff-base derived from 2-aminopyrimidine and 2,4-dihydroxy benzaldehyde. The complexes were characterized by IR, electronic, $^1H$ NMR and mass spectra, conductivity, magnetic and thermal measurements. The inhibitive effect of $H_2$apdhba for the corrosion of copper in 0.5 M HCl was also determined by potentiodynamic polarization measurements.

La(III) Selective Membrane Sensor Based on a New N-N Schiff's Base

  • Ganjali, Mohammad Reza;Matloobi, Parisa;Ghorbani, Maryam;Norouzi, Parviz;Salavati-Niasari, Masoud
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.38-42
    • /
    • 2005
  • Bis(2-methylbenzaldehyde)butane-2,3-dihydrazone(TDSB) was used as new N-N Schiff's base which plays the role of an excellent ion carrier in the construction of a La(III) membrane sensor. The best performance was obtained with a membrane containing, 30% poly(vinyl chloride), 60% benzyl acetate, 6% TDSB and 4% sodium tetraphenyl borate. This sensor reveals a very good selectivity towards La(III) ions over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The proposed electrode exhibits a Nernstian behavior (with slope of 19.8 mV per decade) over a wide concentration range (1.0 ${\times}$ 10$^{-5}$-1.0 ${\times}$ 10$^{-1}$ M). The detection limit of the sensor is 7.0 ${\times}$ 10$^{-6}$ M. It has a very short response time, in the whole concentration range ($\sim$5 s), and can be used for at least twelve weeks in the pH range of 3.0-9.4. The proposed sensor was successfully applied as an indicator electrode for the potentiometric titration of a La(III) solution, with EDTA. It was also successfully applied in the determination of fluoride ions in three mouth wash preparations.