• Title/Summary/Keyword: Scheduling Service

Search Result 699, Processing Time 0.023 seconds

A workflow scheduling based on decision table for cloud computing (클라우드 컴퓨팅에서 결정테이블을 이용한 워크플로우 스케줄링)

  • Kim, Jeong Won
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.5
    • /
    • pp.29-36
    • /
    • 2012
  • Cloud computing has gained great popularity because users don't need to install any softwares as well as maintain hardwares and service providers also can utilize its resources through virtualization of servers. As workflows feature variableness and servers are heterogenous, efficient scheduling of workflows in cloud computing is important factor in view of responsibility and resource utilization. In this paper, we propose a new workflow scheduling named 2-step scheduling which prioritizes each workflow through its significance degree and allocates resources to workflows through decision table. The goal of this 2-step scheduling is to improve responsibility as well as availability versus cost. Simulation results show that the proposed scheme in contrast of counterparts can improve the responsibility as well as availability of resource.

A Two-step Disk Scheduling Scheme for Deadline Guarantee of Multimedia on Demand Server (주문형 멀티미디어 서버의 마감시간보장을 위한 2단계 디스크 스케줄링 기법)

  • 김정원;전봉기;윤홍원
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.88-95
    • /
    • 2004
  • The previous disk scheduling schemes for best-effort applications do not guarantee the real-time requirement of multimedia objects and the real-time disk scheduling schemes do not satisfy throughput of multimedia server. So, this paper propose a two-step disk scheduling scheme to satisfy the requirement of best-effort as well as soft real-time applications. This scheme is based on the round robin algorithm that imposes different weights on the best-effort task and the real-time one. The experiment results on the Linux kernel have shown that both best-effort tasks and real-time tasks could get fair service.

Topology-based Workflow Scheduling in Commercial Clouds

  • Ji, Haoran;Bao, Weidong;Zhu, Xiaomin;Xiao, Wenhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4311-4330
    • /
    • 2015
  • Cloud computing has become a new paradigm by enabling on-demand provisioning of applications, platforms or computing resources for clients. Workflow scheduling has always been treated as one of the most challenging problems in clouds. Commercial clouds have been widely used in scientific research, such as biology, astronomy and weather forecasting. Certainly, it is very important for a cloud service provider to pursue the profits for the commercial essence of clouds. This is also significantly important for the case of providing services to workflow tasks. In this paper, we address the issues of workflow scheduling in commercial clouds. This work takes the communication into account, which has always been ignored. And then, a topology-based workflow-scheduling algorithm named Resource Auction Algorithm (REAL) is proposed in the objective of getting more profits. The algorithm gives a good performance on searching for the optimum schedule for a sample workflow. Also, we find that there exists a certain resource amount, which gets the most profits to help us get more enthusiasm for further developing the research. Experimental results demonstrate that the analysis of the strategies for most profits is reasonable, and REAL gives a good performance on efficiently getting an optimized scheme with low computing complexity.

A Modified-PLFS Packet Scheduling Algorithm for Supporting Real-time traffic in IEEE 802.22 WRAN Systems (IEEE 802.22 WRAN 시스템에서 실시간 트래픽 지원을 위한 Modified-PLFS 패킷 알고리즘)

  • Lee, Young-Du;Koo, In-Soo;Ko, Gwang-Zeen
    • Journal of Internet Computing and Services
    • /
    • v.9 no.4
    • /
    • pp.1-10
    • /
    • 2008
  • In this paper, a packet scheduling algorithm, called the modified PLFS, is proposed for real-time traffic in IEEE 802.22 WRAN systems. The modified PLFS(Packet Loss Fair Scheduling) algorithm utilizes not only the delay of the Head of Line(HOL) packets in buffer of each user but also the amount of expected loss packets in the next-next frame when a service will not be given in the next frame. The performances of the modified PLFS are compared with those of PLFS and M-LWDF in terms of the average packet loss rate and throughput. The simulation results show that the proposed scheduling algorithm performs much better than the PLFS and M-LWDF algorithms.

  • PDF

Scheduling of Real-time and Nonreal-time Traffics in IEEE 802.11 Wireless LAN (무선랜에서의 실시간 및 비실시간 트래픽 스케줄링)

  • Lee, Ju-Hee;Lee, Chae Y.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.75-89
    • /
    • 2003
  • Media Access Control (MAC) Protocol in IEEE 802.11 Wireless LAN standard supports two types of services, synchronous and asynchronous. Synchronous real-time traffic is served by Point Coordination Function (PCF) that implements polling access method. Asynchronous nonreal-time traffic is provided by Distributed Coordination Function (DCF) based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. Since real-time traffic is sensitive to delay, and nonreal-time traffic to error and throughput, proper traffic scheduling algorithm needs to be designed. But it is known that the standard IEEE 802.11 scheme is insufficient to serve real-time traffic. In this paper, real-time traffic scheduling and admission control algorithm is proposed. To satisfy the deadline violation probability of the real time traffic the downlink traffic is scheduled before the uplink by Earliest Due Date (EDD) rule. Admission of real-time connection is controlled to satisfy the minimum throughput of nonreal-time traffic which is estimated by exponential smoothing. Simulation is performed to have proper system capacity that satisfies the Quality of Service (QoS) requirement. Tradeoff between real-time and nonreal-time stations is demonstrated. The admission control and the EDD with downlink-first scheduling are illustrated to be effective for the real-time traffic in the wireless LAN.

CFP Scheduling for Real-Time Service and Energy Efficiency in the Industrial Applications of IEEE 802.15.4

  • Ding, Yuemin;Hong, Seung Ho
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.87-101
    • /
    • 2013
  • In industrial applications, sensor networks have to satisfy specified time requirements of exchanged messages. IEEE 802.15.4 defines the communication protocol of the physical and medium access control layers for wireless sensor networks, which support real-time transmission through guaranteed time slots (GTSs). In order to improve the performance of IEEE 802.15.4 in industrial applications, this paper proposes a new traffic scheduling algorithm for GTS. This algorithm concentrates on time-critical industrial periodic messages and determines the values of network and node parameters for GTS. It guarantees real-time requirements of periodic messages for industrial automation systems up to the order of tens to hundreds of milliseconds depending on the traffic condition of the network system. A series of simulation results are obtained to examine the validity of the scheduling algorithm proposed in this study. The simulation results show that this scheduling algorithm not only guarantees real-time requirements for periodic message but also improves the scalability, bandwidth utilization, and energy efficiency of the network with a slight modification of the existing IEEE 802.15.4 protocol.

A Review on the CPU Scheduling Algorithms: Comparative Study

  • Ali, Shahad M.;Alshahrani, Razan F.;Hadadi, Amjad H.;Alghamdi, Tahany A.;Almuhsin, Fatimah H.;El-Sharawy, Enas E.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.19-26
    • /
    • 2021
  • CPU is considered the main and most important resource in the computer system. The CPU scheduling is defined as a procedure that determines which process will enter the CPU to be executed, and another process will be waiting for its turn to be performed. CPU management scheduling algorithms are the major service in the operating systems that fulfill the maximum utilization of the CPU. This article aims to review the studies on the CPU scheduling algorithms towards comparing which is the best algorithm. After we conducted a review of the Round Robin, Shortest Job First, First Come First Served, and Priority algorithms, we found that several researchers have suggested various ways to improve CPU optimization criteria through different algorithms to improve the waiting time, response time, and turnaround time but there is no algorithm is better in all criteria.

Emotion-aware Task Scheduling for Autonomous Vehicles in Software-defined Edge Networks

  • Sun, Mengmeng;Zhang, Lianming;Mei, Jing;Dong, Pingping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3523-3543
    • /
    • 2022
  • Autonomous vehicles are gradually being regarded as the mainstream trend of future development of the automobile industry. Autonomous driving networks generate many intensive and delay-sensitive computing tasks. The storage space, computing power, and battery capacity of autonomous vehicle terminals cannot meet the resource requirements of the tasks. In this paper, we focus on the task scheduling problem of autonomous driving in software-defined edge networks. By analyzing the intensive and delay-sensitive computing tasks of autonomous vehicles, we propose an emotion model that is related to task urgency and changes with execution time and propose an optimal base station (BS) task scheduling (OBSTS) algorithm. Task sentiment is an important factor that changes with the length of time that computing tasks with different urgency levels remain in the queue. The algorithm uses task sentiment as a performance indicator to measure task scheduling. Experimental results show that the OBSTS algorithm can more effectively meet the intensive and delay-sensitive requirements of vehicle terminals for network resources and improve user service experience.

Segment Scheduling Scheme to Support Seamless DASH-based Live Streaming Service (끊김 없는 DASH 기반 라이브 스트리밍 서비스를 제공하기 위한 세그먼트 스케줄링 기법)

  • Yun, Dooyeol;Chung, Kwangsue
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.7
    • /
    • pp.310-314
    • /
    • 2016
  • Currently, several research studies are looking to improve the quality of DASH (Dynamic Adaptive Streaming over HTTP) based live streaming services. However, conventional DASH based streaming schemes cannot provide seamless playback while maintaining the low buffering and it adversely affects the QoE (Quality of Experience). To address this problem, we propose the QoE driven segment scheduling scheme. The proposed scheme adaptively schedules the segment request message according to the time and variation of segment fetching. Simulation results indicate that the proposed scheme improves the QoE of live streaming service by maintaining the low buffering delay and reducing the buffer underflow events.

MARS: Multiple Access Radio Scheduling for a Multi-homed Mobile Device in Soft-RAN

  • Sun, Guolin;Eng, Kongmaing;Yin, Seng;Liu, Guisong;Min, Geyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.79-95
    • /
    • 2016
  • In order to improve the Quality-of-Service (QoS) of latency sensitive applications in next-generation cellular networks, multi-path is adopted to transmit packet stream in real-time to achieve high-quality video transmission in heterogeneous wireless networks. However, multi-path also introduces two important challenges: out-of-order issue and reordering delay. In this paper, we propose a new architecture based on Software Defined Network (SDN) for flow aggregation and flow splitting, and then design a Multiple Access Radio Scheduling (MARS) scheme based on relative Round-Trip Time (RTT) measurement. The QoS metrics including end-to-end delay, throughput and the packet out-of-order problem at the receiver have been investigated using the extensive simulation experiments. The performance results show that this SDN architecture coupled with the proposed MARS scheme can reduce the end-to-end delay and the reordering delay time caused by packet out-of-order as well as achieve a better throughput than the existing SMOS and Round-Robin algorithms.