Constraint directed scheduling techniques, representing problem constraints explicitly and constructing schedules by constrained heuristic search, have been successfully applied to real world scheduling problems that require satisfying a wide variety of constraints. However, there has been little basic research on the representation and optimization of the objective value of a schedule in the constraint directed scheduling literature. In particular, the cost objective is very crucial for enterprise decision making to analyze the effects of alternative business plans not only from operational shop floor scheduling but also through strategic resource planning. This paper aims to explicitly represent and optimize the total cost of a schedule including the tardiness and inventory costs while satisfying non-relaxable constraints such as resource capacity and temporal constraints. Within the cost based scheduling framework, a cost propagation algorithm is presented to update cost information throughout temporal constraints within the same job.
The Journal of Korean Institute of Communications and Information Sciences
/
v.35
no.2A
/
pp.121-127
/
2010
In this paper, we propose a computationally efficient scheduling algorithm that can arbitrarily control the throughput-fairness tradeoff in a multiuser wireless communication environment. As a new scheduling criterion, we combine linearly two well-known scheduling criteria such as one of achieving the maximum sum throughput and the other of achieving the maximum fairness, so as to control the relative proportion of the throughput and the fairness according to a control factor. For linear combining two different criteria, their optimization directivenesses and the units should be unified first. To meet these requirements, we choose an instantaneous channel capacity as a scheduling criterion for maximizing the sum throughput and the average serving throughput for maximizing the fairness. Through a unified linear combining of two optimization objectives with the control factor, it can provide various throughput-fairness tradeoffs according to the control factors. For further simplification, we exploit a high signal-to-noise ratio (SNR) approximation of the instantaneous channel capacity. Through computer simulations, we evaluate the throughput and fairness performances of the proposed algorithm according to the control factors, assuming an independent Rayleigh fading multiuser channel. We also evaluate the proposed algorithm employing the high SNR approximation. From simulation results, we could see that the proposed algorithm can control arbitrarily the throughput-fairness performance between the performance of the scheduler aiming to the maximum sum throughput and that of the scheduler aiming to the maximum fairness, finally, we see that the high SNR approximation can give a satisfactory performance in this situation.
This research is a development of useful S/W program for real industry about optimal product scheduling in real plant for manufacturing polymer products. For this, we used a fine model with total amount of losses in weight(ton) as an objective for optimal scheduling and a genetic algorithm for optimization in this factory they manufacture three different products. Major products are A and B but the product which can be process in the period of products change over. They also sells them as a chap product in market. The major products have several types of packing process-bulk, pack for domestic market, pack for export. The demands of product with each packing type are increased, and frequently they failed keep the deadline for sail. Based on realistic production situation, we composed a fine modeling for optimal scheduling. And we also develop a S/W program for optimal scheduling which can be used by non-specialist in scheduling problem. We used a modified genetic algorithm and it gave us a better solution in process. We can have a result of reducing the total amount of losses in weight by half compared with the losses when existing production schedule.
The Vehicle Routing and Scheduling Problem with Time Windows(VRSPTW) is to establish a delivery route of minimum cost satisfying the time constraints and capacity demands of many customers. The VRSPTW takes a long time to generate a solution because this is a NP-hard problem. To generate the nearest optimal solution within a reasonable time, we propose the heuristic by using an ACO(Ant Colony Optimization) with multi-cost functions. The multi-cost functions can generate a feasible initial-route by applying various weight values, such as distance, demand, angle and time window, to the cost factors when each ant evaluates the cost to move to the next customer node. Our experimental results show that our heuristic can generate the nearest optimal solution more efficiently than Solomon I1 heuristic or Hybrid heuristic applied by the opportunity time.
One of the major advancements of the Fourth Industrial Revolution is the use of Internet of Drones (IoD), which combines the Internet of Things (IoT) and drone technology. IoD technology is especially important for efficiently and economically operating C4ISR operations in actual battlefields supporting various combat situations. The purpose of this study is to solve the problems of limited battery capacity of drones and lack of budgeting criteria for military drone transcription, introduction, and operation. If the mission area is defined and corresponding multi-drone hovering check points and mission completion time limits are set, then an energy and time co-optimized scheduling and operation control scheme is needed. Because such a scheme does not exist, in this paper, a Drone Force Deployment Optimization (DFDO) scheme is proposed to help schedule multi-drone operation scheduling and networked based remote multi-drone control.
Journal of Korean Society of Industrial and Systems Engineering
/
v.33
no.4
/
pp.58-68
/
2010
Particle Swarm Optimization (PSO) which has been well known to solve continuous problems can be applied to discrete combinatorial problems. Several DPSO (Discrete Particle Swarm Optimization) algorithms have been proposed to solve discrete problems such as traveling salesman, vehicle routing, and flow shop scheduling problems. They are different in representation of position and velocity vectors, operation mechanisms for updating vectors. In this paper, the performance of 5 DPSOs is analyzed by applying to traditional Traveling Salesman Problems. The experiment shows that DPSOs are comparable or superior to a genetic algorithm (GA). Also, hybrid PSO combined with local optimization (i.e., 2-OPT) provides much improved solutions. Since DPSO requires more computation time compared with GA, however, the performance of hybrid DPSO is not better than hybrid GA.
Journal of the Korean Operations Research and Management Science Society
/
v.23
no.4
/
pp.33-51
/
1998
The industrial operation is one of the three basic modes of shipping operation with liner and Tramp operations. Industrial operators usually control vessels of their own or on a time charter to minimize the cost of shipping their cargoes. Such operations abound in shipping of bulk commodities, such as oil, chemicals and ores. This work is concerned with an operational optimization analysis of the fleet owned by a major oil company. a typical industrial operator. The operational optimization problem of the fleet of a major oil company is divided Into two phase problem. The front end corresponds to the optimization problem of the transportation of crude oil. product mix. and the distribution of product oil to comply with the demand of the market. The back end tackles the scheduling optimization problem of the fleet to meet the seaborne transportation demand derived from the front end. A case study reflecting the practices of an international major oil company is demonstrated to make clear the underlying ideas.
In this paper we deal with linear chance-constrained optimization problems, a class of problems which naturally arise in practical applications in finance, engineering, transportation and scheduling, where decisions are made in presence of uncertainty. After giving the deterministic equivalent formulation of a linear chance-constrained optimization problem we construct a conjugate dual problem to it. Then we provide for this primal-dual pair weak sufficient conditions which ensure strong duality. In this way we generalize some results recently given in the literature. We also apply the general duality scheme to a portfolio optimization problem, a fact that allows us to derive necessary and sufficient optimality conditions for it.
Lagrangian relaxation is the most widely adopted method for solving unit commitment (UC) problems. It consists of two steps: dual optimization and primal feasible solution construction. The dual optimization step is crucial in determining the overall performance of the solution. This paper intends to evaluate two dual optimization methods - one based on subgradient (SG) and the other based on the cutting plane. Large-scale UC problems with hundreds of thousands of variables and constraints have been generated for evaluation purposes. It is found that the evaluated SG method yields very promising results.
The Transactions of the Korean Institute of Electrical Engineers A
/
v.54
no.3
/
pp.152-157
/
2005
An objected-oriented programming(OOP) technique is introduced to dispatch schedules for TWBP. Some dispatch schedules such as constrained (pre)dispatch, unconstrained (pre)dispatch, and nominal self-dispatch schedule need to be peformed to make power market work. These dispatch schedules are similar but have some differences in required constraints, needed data, and scheduling time. Therefore, it makes the scheduling program simple to introduce the OOP technique to this problem: to have each instance of the OOP perform its own dispatch scheduling. The developed program adopts linear programming(LP) as an optimization tool and could consider some crucial constraints such as power balance, generation power limits, generation ramp-rates, power limitations of transmission lines, and power system security.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.