This study proposes a novel deep neural network model that can accurately detect objects and their relationships in an image and represent them as a scene graph. The proposed model utilizes several multimodal features, including linguistic features and visual context features, to accurately detect objects and relationships. In addition, in the proposed model, context features are embedded using graph neural networks to depict the dependencies between two related objects in the context feature vector. This study demonstrates the effectiveness of the proposed model through comparative experiments using the Visual Genome benchmark dataset.
According to much research on cognitive science, the impact of the scene-context on human visual search in real-world images could be as important as the saliency. Therefore, this study proposed a method of Adaptive Control of Thought-Rational (ACT-R) modeling of visual search in real-world images, based on saliency and scene-context. The modeling method was developed by using the utility system of ACT-R to describe influences of saliency and scene-context in real-world images. Then, the validation of the model was performed, by comparing the data of the model and eye-tracking data from experiments in simple task in which subjects search some targets in indoor bedroom images. Results show that model data was quite well fit with eye-tracking data. In conclusion, the method of modeling human visual search proposed in this study should be used, in order to provide an accurate model of human performance in visual search tasks in real-world images.
Kim, Hongjo;Park, Sungjae;Ha, Sooji;Kim, Hyoungkwan
국제학술발표논문집
/
The 6th International Conference on Construction Engineering and Project Management
/
pp.333-335
/
2015
A computer vision-based scene recognition algorithm is proposed for monitoring construction sites. The system analyzes images acquired from a surveillance camera to separate regions and classify them as building, ground, and hole. Mean shift image segmentation algorithm is tested for separating meaningful regions of construction site images. The system would benefit current monitoring practices in that information extracted from images could embrace an environmental context.
Human Emotion Recognition is an exciting topic that has been attracting many researchers for a lengthy time. In recent years, there has been an increasing interest in exploiting contextual information on emotion recognition. Some previous explorations in psychology show that emotional perception is impacted by facial expressions, as well as contextual information from the scene, such as human activities, interactions, and body poses. Those explorations initialize a trend in computer vision in exploring the critical role of contexts, by considering them as modalities to infer predicted emotion along with facial expressions. However, the contextual information has not been fully exploited. The scene emotion created by the surrounding environment, can shape how people perceive emotion. Besides, additive fusion in multimodal training fashion is not practical, because the contributions of each modality are not equal to the final prediction. The purpose of this paper was to contribute to this growing area of research, by exploring the effectiveness of the emotional scene gist in the input image, to infer the emotional state of the primary target. The emotional scene gist includes emotion, emotional feelings, and actions or events that directly trigger emotional reactions in the input image. We also present an attention-based fusion network, to combine multimodal features based on their impacts on the target emotional state. We demonstrate the effectiveness of the method, through a significant improvement on the EMOTIC dataset.
제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
/
pp.277-282
/
1993
In understanding concepts, there are two aspects; image and language. The point discussed in this paper is things fundamental in finding proper relations between objects in a scene to represent the meaning of the that whole scene properly through experiencing in image and language. It is assumed that one of the objects in a scene has letters as objects inside its contour. As the present system can deal with both figures and letters in a scene, the above assumption makes it easy for the system to infer the context of a scene. Several personal computers on the LAN network are used and they process items in parallel.
효율적인 영상의 검색과 동영상의 축약을 위해 선행되어야 하는 것이 동영상 정보에서 의미를 추출하여 영상 정보를 어노테이션 하는 작업이다. 어노테이션을 위한 동영상의 의미 정보는 다양한 방식에 의해 얻어질 수 있다. 동영상의 의미정보는 영상의 개체들의 단순한 정체 정보를 추출하는 방식과 개체들이 만들어 내는 상황정보를 추출하는 방식으로 구분될 수 있다. 하지만 개체들의 단순 정보만으로 어노테이션을 진행하기 보다는 개체들 간의 상호작용이나 관계에 대한 표현을 개체 정보와 함께 고려하여 대화 상황에 대한 온전한 의미를 어노테이션 하는 것이 더욱 좋다. 본 논문은 영상으로부터 화자정보를 추출하고 대화상황을 구성하여 어노테이션 하는 것에 대한 연구이다. 인식된 얼굴 정보로부터 현재 영상에 누가 있는 지 알아낸 후 입의 움직임을 분석하여 화자가 누구인지 알아내고, 화자와 청자 및 자막의 유무를 통해 대화 상황을 추출하여 XML로 변환하는 방법을 본 연구에서 제안한다.
본 연구는 사람들이 장면을 지각하는 동안 장면 맥락에 부합하지 않는 물체에 더 많은 주의를 할당하고, 그 물체에 대한 정확 회상률도 높을 것이라는 가설을 검증하고자 하였다. 이를 검증하기 위하여, 본 연구에서는 두 개의 실험을 수행하였다. 두 실험 모두 장면 제시 시간(2초, 5초, 10초)과 맥락 부합성(부합, 비부합)을 조작한 $3{\times}2$ 요인설계를 사용하였다. 종속 변인은 장면을 지각하는 동안의 안구 운동 패턴과 장면을 모두 학습한 뒤 수행한 기억 검사에서의 정확 회상률이었다. 실험 1에서는 선행 연구의 제한점을 보완하여 물체와 배경의 맥락 부합성에 따른 주의 할당을 재검증하고, 실험 2에서는 장면을 지각하는 동안 참가자들의 주의를 분산시키는 주의 분산 과제를 사용하였을 때에도 여전히 맥락에 부합하지 않는 물체에 더 많은 주의를 할당하는지 검증하였다. 실험 1의 연구 결과, 참가자들은 짧은 시간 내에 장면 맥락에 부합하지 않는 물체를 빠르게 응시하였고, 장면을 지각하는 동안 맥락 비부합 물체를 상대적으로 더 많이, 자주, 그리고 오랫동안 응시하였으며 그 물체에 대한 위치 기억이 우수하였다. 주의 분산 과제를 수행한 실험 2에서도 실험 1과 유사한 패턴의 결과를 관찰할 수 있었다. 주의 분산 과제를 통해 주의를 의도적으로 분산시켰을 때에도, 맥락에 부합하지 않는 물체에 더 많은 주의가 할당된 본 연구의 결과는 맥락 부합성이 장면 지각에서의 주의 할당에 강력한 영향을 미친다는 사실을 시사한다.
In this paper, we present a practical place and object recognition method for guiding visitors in building environments. Recognizing places or objects in real world can be a difficult problem due to motion blur and camera noise. In this work, we present a modeling method based on the bidirectional interaction between places and objects for simultaneous reinforcement for the robust recognition. The unification of visual context including scene context, object context, and temporal context is also. The proposed system has been tested to guide visitors in a large scale building environment (10 topological places, 80 3D objects).
3D 애니메이션의 화면에서 전해지는 분위기는 대부분 3D CG 라이팅의 설정에 따라 좌우 된다고 해도 과언이 아니다. 컴퓨터 그래픽의 맥락에서 라이팅은 예술적이고 기술적인 방법으로 디지털 씬(Scene)들을 비추는(밝히는) 과정이다. 그래서 관객은 화면에서 적절한 명쾌함과 분위기로 나타내고자 하는 감독의 의도가 무엇인지를 인지 할 수 있는 것이다. Lighting은 인간에 의해 창조 및 조작되는 빛과 색채의 미학으로서 장면들을 아름답고 조화롭게 만드는 역할을 한다. 또한 전달하고자하는 이야기와 표현하고자 하는 분위기를 상징적이고 은유적 기법으로 스타일화 한다. 그러므로 라이팅 스타일의 컨셉은 애니메이션의 특정한 상황이나 환경 그리고 아트 디렉션 밀접하게 연관되어진다. 그러나 불행히도 장면을 라이팅하는 작업공정에는 쉽게 할 수 있는 정해진 규칙이나 공식은 없다. 요컨대, 라이팅은 위치, 컬러, 농도, 그림자 영역과 범위를 포함하는 라이팅 셋업의 조건적 요소들로 애니메이션에서 보여 주고자하는 장면의 스타일을 결정짓는 데에 기여하지만, 그와 동시에 서정드라마냐 서스펜스냐 하이 드라마냐 와 같은 애니메이션의 장르와 장면의 스타일과 같은 전체적인 무드를 제시하는 예술적 측면을 간과해서는 않될 것이다.
장면 경계 검출은 비디오 데이타에서 의미적인 구조를 이해하는데 있어서 매우 중요한 역할을 한다. 하지만, 장면 경계 검출은 의미적인 일관성을 갖는 장면을 추출하여야 하므로 셧 경계 검출에 비해 매우 까다로운 작업이다. 본 논문에서는 비디오 데이타에 존재하는 의미적인 정보를 사용하기 위해 비디오 셧의 지역 및 전역 컨텍스트 정보를 추출하여 이를 바탕으로 장면 경계를 검출하는 방식을 제안한다. 비디오 셧의 지역 컨텍스트 정보는 셧 자체에 존재하는 컨텍스트 정보로서 전경 객체(foreground object), 배경(background) 및 움직임 정보들로 정의한다. 전역 컨텍스트 정보는 주어진 비디오 셧이 주위에 존재하는 다른 비디오 셧들과의 관계로부터 발생하는 다양한 컨텍스트로서 셧들간의 유사성, 상호 작용 및 셧들의 지속 시간 패턴으로 정의한다. 이런 컨텍스트 정보를 바탕으로 연결 작업, 연결 검증 작업 및 조정 작업등의 3단계 과정을 거쳐 장면을 검출한다. 제안된 방식을 TV 드라마 및 영화에 적용하여 80% 이상의 검출 정확도를 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.