• 제목/요약/키워드: Scene classification

검색결과 116건 처리시간 0.021초

Classification of TV Program Scenes Based on Audio Information

  • Lee, Kang-Kyu;Yoon, Won-Jung;Park, Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • 제23권3E호
    • /
    • pp.91-97
    • /
    • 2004
  • In this paper, we propose a classification system of TV program scenes based on audio information. The system classifies the video scene into six categories of commercials, basketball games, football games, news reports, weather forecasts and music videos. Two type of audio feature set are extracted from each audio frame-timbral features and coefficient domain features which result in 58-dimensional feature vector. In order to reduce the computational complexity of the system, 58-dimensional feature set is further optimized to yield l0-dimensional features through Sequential Forward Selection (SFS) method. This down-sized feature set is finally used to train and classify the given TV program scenes using κ -NN, Gaussian pattern matching algorithm. The classification result of 91.6% reported here shows the promising performance of the video scene classification based on the audio information. Finally, the system stability problem corresponding to different query length is investigated.

Change Detection in Land-Cover Pattern Using Region Growing Segmentation and Fuzzy Classification

  • Lee Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제21권1호
    • /
    • pp.83-89
    • /
    • 2005
  • This study utilized a spatial region growing segmentation and a classification using fuzzy membership vectors to detect the changes in the images observed at different dates. Consider two co-registered images of the same scene, and one image is supposed to have the class map of the scene at the observation time. The method performs the unsupervised segmentation and the fuzzy classification for the other image, and then detects the changes in the scene by examining the changes in the fuzzy membership vectors of the segmented regions in the classification procedure. The algorithm was evaluated with simulated images and then applied to a real scene of the Korean Peninsula using the KOMPSAT-l EOC images. In the expertments, the proposed method showed a great performance for detecting changes in land-cover.

다중 클래스의 이미지 장면 분류 (Image Scene Classification of Multiclass)

  • 신성윤;이현창;신광성;김형진;이재완
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.551-552
    • /
    • 2021
  • 본 논문에서는 변환 학습에 기반을 둔 다중 클래스 영상 장면 분류 방법을 제시한다. ImageNet 대형 이미지 데이터 세트에서 사전 훈련된 네트워크 모델에 의존하여 다중 클래스의 자연 장면 이미지를 분류한다. 실험에서는 최적화된 ResNet 모델을 Kaggle의 Intel Image Classification 데이터 셋에 분류하여 우수한 결과를 얻었다.

  • PDF

자동 잔향 편집을 위한 컬러 및 깊이 정보 기반 실내 장면 분류 (Indoor Scene Classification based on Color and Depth Images for Automated Reverberation Sound Editing)

  • 정민혁;유용현;박성준;황승준;백중환
    • 한국정보통신학회논문지
    • /
    • 제24권3호
    • /
    • pp.384-390
    • /
    • 2020
  • 영화나 VR 콘텐츠 제작 시 음향에 잔향 효과를 주는 것은 현장감과 생동감을 느끼게 하는데 매우 중요한 요소이다. 공간에 따른 음향의 잔향 시간은 RT60(Reverberation Time 60dB)이라는 표준에서 권고된다. 본 논문에서는 음향 편집 시 자동 잔향 편집을 위한 장면 인식 기법을 제안한다. 이를 위해 컬러 이미지와 예측된 깊이 이미지를 동일한 모델에 독립적으로 학습하는 분류 모델을 설계하였다. 실내 장면 분류는 내부 구조가 유사한 클래스가 존재하여 컬러 정보 학습만으로는 인식률의 한계가 존재한다. 공간의 깊이 정보를 사용하기 위해 딥러닝 기반의 깊이 정보 추출 기술을 사용하였다. RT60을 기반으로 총 10개의 장면 클래스를 구성하고 모델 학습 및 평가를 진행하였다. 최종적으로 제안하는 SCR+DNet(Scene Classification for Reverb+Depth Net) 분류기는 92.4%의 정확도로 기존의 CNN 분류기들보다 더 높은 성능을 달성하였다.

하이퍼그래프 모델 기반의 장면 이미지 분류 기법 (Hypergraph model based Scene Image Classification Method)

  • 최선욱;이종호
    • 한국지능시스템학회논문지
    • /
    • 제24권2호
    • /
    • pp.166-172
    • /
    • 2014
  • 이미지를 각각의 카테고리로 분류하는 일은 컴퓨터 비전 분야의 중요한 문제 중 하나이다. 그러나 이미지에 존재하는 가변성, 모호성, 스케일 문제 등으로 인해 매우 도전적인 문제라고 할 수 있다. 본 논문에서는 장면 이미지를 구성하는 시멘틱 속성들의 고차원의 상호작용 관계를 고려 가능한 하이퍼그래프 기반의 모델링 기법을 제시하고 이를 장면 이미지 분류에 적용한다. 각 장면 카테고리에 준최적화된 하이퍼그래프를 생성하기 위해 확률 부분공간 기법에 기반을 둔 탐색기법을 제안하고, 이들 부분 공간 내에 속한 시멘틱 속성들의 발현량을 축약하기 위한 우도비 기반의 선형 변환 기법을 제안한다. 제안한 기법의 우수성을 검증하기 위한 실험을 통하여 제시한 기법을 통해 생성된 특징 벡터의 분별력이 기존의 기법들에서 사용된 특징 벡터들의 분별력보다 우수함을 보인다. 또한 제안한 기법을 장면 분류 데이터에 적용한 결과 기존의 기법들과 비교하여 경쟁력 있는 분류 성능을 보인다. 제안 한 기법은 이미지 분류에서 일반적으로 사용 되는 기법인 BoW+SPM 모델과 비교하여 3~4%이상의 성능 향상을 보였다.

원격탐사 데이타의 정확도 향상을 위한 Bitemporal Classification 기법의 적용 (Application of Bitemporal Classification Technique for Accuracy Improvement of Remotely Sensed Data)

  • 안철호;안기원;윤상호;박민호
    • 한국측량학회지
    • /
    • 제5권2호
    • /
    • pp.24-33
    • /
    • 1987
  • 본 논문은 원격탐사 Data를 이용한 분야에서 보다 효과적인 좌상처리 기법 및 보다 정확한 분류화상을 얻는 것을 목적으로 하고 있다. 이의 실행을 위해 여름 좌상과 겨울 화상을 합성한 토지이용 분류결과와 여름 화상만의 분류결과를 비교분석 하였다. 위의 분석결과로부터 Bitemporal Classification 기법과 $tan^{-1}$변환이 유효함을 알아내었다. 특히 Bitemporal Classification 기법을 적용함으로써 농경지를 논과 밭으로 구별하여 분류하는 것이 보다 가능하였다.

  • PDF

A Remote Sensing Scene Classification Model Based on EfficientNetV2L Deep Neural Networks

  • Aljabri, Atif A.;Alshanqiti, Abdullah;Alkhodre, Ahmad B.;Alzahem, Ayyub;Hagag, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.406-412
    • /
    • 2022
  • Scene classification of very high-resolution (VHR) imagery can attribute semantics to land cover in a variety of domains. Real-world application requirements have not been addressed by conventional techniques for remote sensing image classification. Recent research has demonstrated that deep convolutional neural networks (CNNs) are effective at extracting features due to their strong feature extraction capabilities. In order to improve classification performance, these approaches rely primarily on semantic information. Since the abstract and global semantic information makes it difficult for the network to correctly classify scene images with similar structures and high interclass similarity, it achieves a low classification accuracy. We propose a VHR remote sensing image classification model that uses extracts the global feature from the original VHR image using an EfficientNet-V2L CNN pre-trained to detect similar classes. The image is then classified using a multilayer perceptron (MLP). This method was evaluated using two benchmark remote sensing datasets: the 21-class UC Merced, and the 38-class PatternNet. As compared to other state-of-the-art models, the proposed model significantly improves performance.

다량의 Landsat 위성영상 처리를 통한 광역 토지피복분류 (Land Cover Classification of a Wide Area through Multi-Scene Landsat Processing)

  • 박성미;임정호;사공호상
    • 대한원격탐사학회지
    • /
    • 제17권3호
    • /
    • pp.189-197
    • /
    • 2001
  • 원격탐사의 장점 중 하나는 넓은 지역의 정보를 신속하게 추출할 수 있다는 것이다. 이러한 장점은 광역지대의 토지피복을 분류하여 자원 및 환경을 신속하게 파악하고자 하는 수요에 부응할 수 있는 효과적인 수단이다. 이 연구에서는 다량의 위성영상을 이용하여 넓은 지역의 토지피복분류를 효율적으로 수행하는 방법을 제안하였다. 이를 위해 한반도를 대상으로 Landsat TM 및 ETM+ 위성영상 23 scene을 이용하여 공간해상도 100m인 토지피복분류를 수행하였다. 기존의 정형화된 위성영상처리 및 분류기법을 적용하여 다량의 위성영상을 처리하고 광역 토지피복분류를 효율적으로 수행하였다. 이러한 방법은 국토계획이나 광역 지역계획 등에서 필요한 전반적인 자원현황을 신속하고 효과적으로 제공할 수 있는 수단이 될 것으로 판단된다.

시멘틱개념과 에지탐지 기반의 적응형 이미지 분류기법 (Adaptive Scene Classification based on Semantic Concepts and Edge Detection)

  • ;;김강석;강상길
    • 지능정보연구
    • /
    • 제15권2호
    • /
    • pp.1-13
    • /
    • 2009
  • 개념 기반 이미지풍경 분류 기법은 데이터베이스에 있는 대량의 이미지 를 카테고리별로 구분하는 많이 적용되는 응용분야이다. 풍경이 속하는 카테고리를 알면 데이터베이스에서 해변, 산, 숲, 필드와 같은 필요한 풍경사진을 찾고자 할 때 불필요한 이미지를 필터링하여 신속하고 정확하게 찾을 수 있다. 본 논문에서는 이미지 분류를 위한 시멘틱 모델링 기반의 적응 세그멘테이션 기법을 제안 한다. 잔디, 물, 하늘과 같은 시멘틱 개념에 따른 이미지를 서브구역으로 나누어 세그멘테이션을 한다. 세그멘테이션은 에지탐색을 이용하고 또한 K-Nearest(K-NN)를 이용하여 세그멘테이션을 한다. 세그멘테이션 과정에서 이미지의 복잡도에 따라 적응적으로 서브구역으로 나눈다. 실험에서는 Vosel과 schiele가 제안한 방법과의 비교를 통해서 정확도면에서 제안된 연구의 우수성을 보여준다.

  • PDF

A Novel Two-Stage Training Method for Unbiased Scene Graph Generation via Distribution Alignment

  • Dongdong Jia;Meili Zhou;Wei WEI;Dong Wang;Zongwen Bai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권12호
    • /
    • pp.3383-3397
    • /
    • 2023
  • Scene graphs serve as semantic abstractions of images and play a crucial role in enhancing visual comprehension and reasoning. However, the performance of Scene Graph Generation is often compromised when working with biased data in real-world situations. While many existing systems focus on a single stage of learning for both feature extraction and classification, some employ Class-Balancing strategies, such as Re-weighting, Data Resampling, and Transfer Learning from head to tail. In this paper, we propose a novel approach that decouples the feature extraction and classification phases of the scene graph generation process. For feature extraction, we leverage a transformer-based architecture and design an adaptive calibration function specifically for predicate classification. This function enables us to dynamically adjust the classification scores for each predicate category. Additionally, we introduce a Distribution Alignment technique that effectively balances the class distribution after the feature extraction phase reaches a stable state, thereby facilitating the retraining of the classification head. Importantly, our Distribution Alignment strategy is model-independent and does not require additional supervision, making it applicable to a wide range of SGG models. Using the scene graph diagnostic toolkit on Visual Genome and several popular models, we achieved significant improvements over the previous state-of-the-art methods with our model. Compared to the TDE model, our model improved mR@100 by 70.5% for PredCls, by 84.0% for SGCls, and by 97.6% for SGDet tasks.