본 논문에서는 압축되어 있는 MPEG 비디오 시퀀스로부터 DCT의 AC 계수를 이용한 에지 영상을 구하여 급격한 장면의 전환을 검출하는 방법과 매크로블록 타입 정보를 이용하여 점진적 장면 전환인 디졸브(dissolve) 구간을 검출하는 기법을 제안하였다. 에지 추출에 기반한 장면 전환 검출 기법은 밝기의 변화에 덜 민감하며, AC 성분을 이용하면 DC 성분을 이용한 경우보다 원영상을 더욱 잘 표현하는 에지를 추출할 수 있으므로, 보다 정확한 장면 전환을 검출할 수 있다. 제안한 디졸브 검출 기법에서는 영상을 복원하지 않고, MPEG 비트스트림 내의 매크로블록 타입 정보로부터 계산된 인트라 매크로 블록의 개수를 이용하기 때문에 적은 계산량으로 디졸브를 검출할 수 있다. 제안한 장면 전환 검출 방법은 기존의 방법들에 비해서 성능이 우수함을 실험을 통해 입증하였다.
We propose a statically motivated scene change detection algorithm. As the difference between the neighboring frames will generate peaks at scene boundaries, the problem of detecting fast scene changes is equivalent to detecting peaks in a given sequence. In this paper, the peak detection is performed via several statistics, namely the sample means and variances. For eliminating flash lights as well as detecting fast scene changes within a small number of frames, we have opted to use a two-stage process for computing the necessary statistics. The results indicate superiority of necessary statistics. The results indicate superiority of the proposed algorithm over the previously reported algorithm.
The content-based information retrieval for a multimedia database uses feature information extracted from the compressed videos. This paper presents an effective method to detect scene changes from compressed videos. Scene changes are detected with DC values of DCT coefficients in MPEG-1 encoded video sequences. Instead of decoding full frames. partial macroblocks of each frame, horizontal and vertical macroblocks, are decoded to detect scene changes. This method detects abrupt scene changes by decoding minimal number of blocks and saves a lot of computation time. The performance of the proposed algorithm is analyzed based on the precision and the recall. The experimental results show the effectiveness in computation time and detection rate to detect scene changes of various MPEG-1 video streams.
엘리베이터 내의 흡연은 경범죄에 속하는 범죄 행위이다. 엘리베이터 내의 흡연은 커가는 우리 아이들과 약한 여성들에게 매우 치명적일 수 있기 때문이다. 본 논문에서는 엘리베이터 내에서 이러한 범죄 행위인 흡연을 범하는 범죄자를 추출하고자 한다. 추출 방법은 변형된 컬러-X2-test를 이용하여 차이값을 추출하고, 이를 정규화 한다. 다음으로, 4-단계의 장면 전환 검출 알고리즘을 이용하여 연속적인 프레임들에서 장면 전환이 발생한 지점을 찾아 낸다. 마지막으로, 비디오에 저장된 대량의 영상에서 흡연 영상의 검색 및 추출을 위한 방법을 제시한다. 실험에서는 장면 전환 검출 과정과 검출 수와 검색 시간별 검색된 비디오의 수가 나타나 있다. 추출된 흡연 영상은 경찰서나 법원에 증거 자료로 제출하고자 한다.
Motion estimation is one of the key components for high quality video coding. In this paper, a new motion estimation scheme for MPEG-like video coder is suggested. The proposed temporally adaptive motion estimation scheme consists of five functional blocks: Temporal subband analysis (TSBA), extraction of temporal information, scene change detection (SCD), picture type replacement (PTR), and temporally adapted block matching algorithm (TABMA). Here all the functional components are based on the temporal subband analysis. In this papre, we applied the analysis part of subband decompostion to the temporal axis of moving picture sequence, newly defined the temporal activity distribution (TAD) and average TAD, and proposed the temporally adapted block matching algorithm, the scene change detection algorithm and picture type replacement algorithm which employed the results of the temporal subband analysis. A new block matching algorithm TABMA is capable of controlling the block matching area. According to the temporal activity distribution of objects, it allocates the search areas nonuniformly. The proposed SCD and PTR can prevent unavailable motion prediction for abrupt scene changes. Computer simulation results show that the proposed motion estimation scheme improve the quality of reconstructed sequence and reduces the number of block matching trials to 40% of the numbers of trials in conventional methods. The TSBA based scene change detection algorithm can detect the abruptly changed scenes in the intentionally combined sequence of this experiment without additional computations.
대용량의 동영상 데이터 이용에 있어 사용자가 전체 동영상 데이터를 한눈에 파악할 수 있고, 필요한 경우 원하는 지점부터 동영상을 재생할 수 있도록 하기 위하여 동영상 데이터의 정보를 요약해 놓은 프레임 리스트를 제공하며, 효과적인 동영상 검색을 위해서는 동영상 데이터의 색인과정이 필요하다. 본 논문은 내용기반 색인에 기초가 될 동영상의 장면 전환점 검출에 관한 효과적인 방법을.제안하고자 한다. 제안된 방법은 동영상 데이터를 대각선 방향으로 일정 픽셀의 칼라 값을 추출하여 동영상의 전체 구조를 파악할 수 있도록 정지영상으로 샘플링 하였으며, 샘플링 된 데이터는 장면전환점을 한눈으로 파악할 수 있었다. 각각의 프레임에서 추출한 픽셀의 칼라 값은 행렬A에 i$\times$j 행렬로 i는 프레임 수, j는 프레임의 영상 높이로 저장하고 MSE(Mean Square Error) 도입하여 각 프레임의 평균 오차를 계산한다. 평균오차와 일정 임계값을 초과하면 그 프레임을 장면 전환점으로 검출하고자 한다.
This paper introduces a method for video shot group detection needed for efficient management and summary of video. The proposed method detects shots based on low-level visual properties and performs temporal and spatial clustering based on visual similarity of neighboring shots. Shot groups created from temporal clustering are further clustered into small groups with respect to visual similarity. A set of representative shot frames are selected from each cluster of the smaller groups representing a scene. Shots excluded from temporal clustering are also clustered into groups from which representative shot frames are selected. A number of video clips are collected and applied to the method for accuracy of shot group detection. We achieved 91% of accuracy of the method for shot group detection. The number of representative shot frames is reduced to 1/3 of the total shot frames. The experiment also shows the inverse relationship between accuracy and compression rate.
코로나바이러스-19(COVID-19)의 대유행에 따라 전 세계 수많은 확진자가 발생하고 있으며 국민을 불안에 떨게 하고 있다. 바이러스 감염 확산을 방지하기 위해서는 마스크를 제대로 착용하는 것이 필수적이지만 몇몇 사람들은 마스크를 쓰지 않거나 제대로 착용하지 않고 있다. 본 논문에서는 영상 이미지에서의 효율적인 마스크 감지 시스템을 제안한다. 제안 방법은 우선 입력 이미지의 모든 얼굴의 영역을 YOLOv5를 사용하여 감지하고 감지된 얼굴의 수에 따라 3가지의 장면 복잡도(Simple, Moderate, Complex) 중 하나로 분류한다. 그 후 장면 복잡도에 따라 3가지 ResNet(ResNet-18, 50, 101) 중 하나를 기반으로 한 Faster-RCNN을 사용하여 얼굴 부위를 감지하고 마스크를 제대로 착용하였는지 식별한다. 공개 마스크 감지 데이터셋을 활용하여 실험한 결과 제안한 장면 복잡도 기반 적응적인 모델이 다른 모델에 비해 가장 성능이 뛰어남을 확인하였다.
For the performance analysis and traffic control of ATM networks carrying video sequences, need an appropriate video traffic model. In this paper, we propose a new traffic model for MPEG compressed videos which are widely used for any type of video applications at th emoment. The proposed modeling scheme uses scene-based traffic characteristics and considers the correlation between frames of consecutiv GOPs. Using a simple scene detection algorithm, scene changes are modeled by state transitions and the number of GOPs of a scene state is modeled by a geometric distirbution. Frames of a scene stte are modeled by mean I, P, and B frame size. For more accurate traffic modeling, quantization errors (residual bits) that the state transition model using mean values has are compensated by autoregressive processes. We show that our model very well captures the traffic chracteristics of the original videos by performance analysis in terms of autocorrelation, histogram of frame bits genrated by the model, and cell loss rate in the ATM multiplexer with limited buffers. Our model is able to perrorm translations between levels (i.e., GOP, frame, and cell levels) and to estimate very accurately the stochastic characteristics of the original videos by each level.
In this paper the object recognition performance of a photon counting integral imaging system is quantitatively compared with that of a conventional gray scale imaging system. For 3D imaging of objects with a small number of photons, the elemental image set of a 3D scene is obtained using the integral imaging set up. We assume that the elemental image detection follows a Poisson distribution. Computational geometrical ray back propagation algorithm and parametric maximum likelihood estimator are applied to the photon counting elemental image set in order to reconstruct the original 3D scene. To evaluate the photon counting object recognition performance, the normalized correlation peaks between the reconstructed 3D scenes are calculated for the varied and fixed total number of photons in the reconstructed sectional image changing the total number of image channels in the integral imaging system. It is quantitatively illustrated that the recognition performance of the photon counting integral imaging system can be similar to that of a conventional gray scale imaging system as the number of image viewing channels in the photon counting integral imaging (PCII) system is increased up to the threshold point. Also, we present experiments to find the threshold point on the total number of image channels in the PCII system which can guarantee a comparable recognition performance with a gray scale imaging system. To the best of our knowledge, this is the first report on comparisons of object recognition performance with 3D photon counting & gray scale images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.