• Title/Summary/Keyword: Scenario prediction

Search Result 277, Processing Time 0.024 seconds

Assessing Future Climate Change Impact on Hydrologic Components of Gyeongancheon Watershed (기후변화가 경안천 유역의 수문요소에 미치는 영향 평가)

  • Ahn, So-Ra;Park, Min-Ji;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.33-50
    • /
    • 2009
  • The impact on hydrologic components considering future potential climate, land use change and vegetation cover information was assessed using SLURP (Semi-distributed Land-Use Runoff Process) continuous hydrologic model. The model was calibrated (1999 - 2000) and validated (2001 - 2002) for the upstream watershed ($260.4\;km^2$) of Gyeongancheon water level gauging station with the coefficient of determination and Nash-Sutcliffe efficiency ranging from 0.77 to 0.60 and 0.79 to 0.60, respectively. Two GCMs (MIROC3.2hires, ECHAM5-OM) future weather data of high (A2), middle (A1B) and low (B1) emission scenarios of the IPCC (Intergovernmental Panel on Climate Change) were adopted and the data was corrected by 20C3M (20th Century Climate Coupled Model) and downscaled by Change Factor (CF) method using 30 years (1977 - 2006, baseline period) weather data. Three periods data of 2010 - 2039 (2020s), 2040 - 2069 (2050s), 2070 - 2099 (2080s) were prepared. To reduce the uncertainty of land surface conditions, future land use and vegetation canopy prediction were tried by CA-Markov technique and NOAA NDVI-Temperature relationship respectively. MIROC3.2 hires and ECHAM5-OM showed increase tendency in annual streamflow up to 21.4 % for 2080 A1B and 8.9 % for 2050 A1B scenario respectively. The portion of future predicted ET about precipitation increased up to 3 % in MIROC3.2 hires and 16 % in ECHAM5-OM respectively. The future soil moisture content slightly increased compared to 2002 soil moisture.

Projection of Potential Cultivation Region of Satsuma Mandarin and 'Shiranuhi' Mandarin Hybrid Based on RCP 8.5 Emission Scenario (RCP 8.5 기후변화시나리오에 근거한 온주밀감과 '부지화'의 잠재적 재배지 변화 예측)

  • Moon, Young-Eel;Kang, Seok-Beom;Lee, Hyejin;Choi, Young-Hun;Son, In-Chang;Lee, Dong-Hoon;Kim, Sung-Ki;An, Moon-Il
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.4
    • /
    • pp.215-222
    • /
    • 2017
  • The potential change of the cultivation area of main citrus cultivars, satsuma mandarin (Citrus unshiu Marc.) and 'Shiranuhi' mandarin hybrid [(Citrus unshiu ${\times}$ C. sinensis) ${\times}$ C. reticulata] were determined with base year (1981 to 2010) to 2090. The meteorological data provided by the Korea Meteorological Administration (KMA), and the digital agricultural climate map of 30m-solution based on the Representative Concentration Pathways (RCP) 8.5 was used for projection of potential cultivation area. As a result, the potential suitable region of satsuma mandarin included almost Jeju region during base year. At the 2030s, the potential suitable region of satsuma mandarin increased and the cultivable region also increased focused on the coast region of Jeonnam province. From the 2060s, the suitable area spread out to mountain area of Jeju, Jeonnam, Gyeongnam, and the coast region of Kangwon, and the cultivable region expanded to the area of Gyeongbuk, Chungnam, and Jeonbuk. In the case of 'Shiranuhi' mandarin hybrid, the suitable region included only the partial coast area of Jeju, and cultivable area covered Jeju region and the partial southern coast of Jeonnam during the standard period. At the 2030s, the suitable region of 'Shiranuhi' included the current cultivation area of satsuma mandarin, and the cultivable region moved to northward by the partial southern coast region. At the 2090s, the slightly increased suitable region covered all Jeju regions, Jeonnam, Gyeongnam, and the coast area of Kangwon, and the cultivable region proceeded northward focusing on the coastline. In conclusion, the prediction of the potential land for citrus cultivation based on the RCP 8.5 showed that the suitable region of satsuma mandarin decreased, whereas that of cultivation of 'Shiranuhi' increased. Moreover, it was forecasted that citrus cultivation area would extend to Kangwon region at the end of the $21^{st}$ century.

A Study on the Ecosystem Services Value Assessment According to City Development: In Case of the Busan Eco-Delta City Development (도시개발에 따른 생태계서비스 가치 평가 연구: 부산 에코델타시티 사업을 대상으로)

  • Choi, Jiyoung;Lee, Youngsoo;Lee, Sangdon
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.5
    • /
    • pp.427-439
    • /
    • 2019
  • Natural environmental ecology ofthe environmental impact assessment(EIA)is very much lacking in quantitative evaluation. Thus, this study attempted to evaluate quantitative assessment for ecosystem service in the site of Eco-delta project in Busan. As a part of climate change adaptation, this study evaluated and compared with the value for carbon fixation and habitat quality using the InVEST model before and after development with three alternatives of land-use change. Carbon fixation showed 216,674.48 Mg of C (year 2000), and 203,474.25 Mg of C (year 2015)reducing about 6.1%, and in the future of year 2030 the value was dropped to 120,490.84 Mg of C which is 40% lower than year 2015. Alternative 3 of land use planning was the best in terms of carbon fixation showing 6,811.31 Mg of C. Habitat quality also changed from 0.57 (year 2000), 0.35 (year 2015), and 0.21 (year 2030) with continued degradation as development goes further. Alternative 3 also was the highest with 0.21(Alternative 1 : 0.20, Alternative 2 : 0.18). In conclusion,this study illustrated that quantitative method forland use change in the process of EIA can helpdecision making for stakeholders anddevelopers with serving the best scenario forlow impact of carbon. Also it can help better for land use plan, greenhouse gas and natural environmental assets in EIA. This study could be able to use in the environmental policy with numerical data of ecosystem and prediction. Supplemented with detailed analysis and accessibility of basic data, this method will make it possible for wide application in the ecosystem evaluation.

Coupled Hydro-Mechanical Modelling of Fault Reactivation Induced by Water Injection: DECOVALEX-2019 TASK B (Benchmark Model Test) (유체 주입에 의한 단층 재활성 해석기법 개발: 국제공동연구 DECOVALEX-2019 Task B(Benchmark Model Test))

  • Park, Jung-Wook;Kim, Taehyun;Park, Eui-Seob;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.670-691
    • /
    • 2018
  • This study presents the research results of the BMT(Benchmark Model Test) simulations of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to predict fault reactivation and the coupled hydro-mechanical behavior of fault. BMT scenario simulations of Task B were conducted to improve each numerical model of participating group by demonstrating the feasibility of reproducing the fault behavior induced by water injection. The BMT simulations consist of seven different conditions depending on injection pressure, fault properties and the hydro-mechanical coupling relations. TOUGH-FLAC simulator was used to reproduce the coupled hydro-mechanical process of fault slip. A coupling module to update the changes in hydrological properties and geometric features of the numerical mesh in the present study. We made modifications to the numerical model developed in Task B Step 1 to consider the changes in compressibility, Permeability and geometric features with hydraulic aperture of fault due to mechanical deformation. The effects of the storativity and transmissivity of the fault on the hydro-mechanical behavior such as the pressure distribution, injection rate, displacement and stress of the fault were examined, and the results of the previous step 1 simulation were updated using the modified numerical model. The simulation results indicate that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing interaction and collaboration with other research teams of DECOVALEX-2019 Task B and validated using the field experiment data in a further study.

Numerical analysis of morphological changes by opening gates of Sejong Weir (보 개방에 의한 하도의 지형변화 과정 수치모의 분석(세종보를 중심으로))

  • Jang, Chang-Lae;Baek, Tae Hyo;Kang, Taeun;Ock, Giyoung
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.629-641
    • /
    • 2021
  • In this study, a two-dimensional numerical model (Nays2DH) was applied to analyze the process of morphological changes in the river channel bed depending on the changes in the amount of flooding after fully opening the Sejong weir, which was constructed upstream of the Geum River. For this, numerical simulations were performed by assuming the flow conditions, such as a non-uniform flow (NF), unsteady flows (single flood event, SF), and a continuous flood event (CF). Here, in the cases of the SF and CF, the normalized hydrograph was calculated from real flood events, and then the hydrograph was reconfigured by the peak flow discharge according to the scenario, and then it was employed as the flow discharge at the upstream boundary condition. In this study, to quantitatively evaluate the morphological changes, we analyzed the time changes in the bed deformation the bed relief index (BRI), and we compared the aerial photographs of the study area and the numerical simulation results. As simulation results of the NF, when the steady flow discharge increases, the ratio of lower width to depth decreases and the speed of bar migration increases. The BRI initially increases, but the amount of change decreased with time. In addition, when the steady flow discharge increases, the BRI increased. In the case of SF, the speed of bar migration decreased with the change of the flow discharge. In terms of the morphological response to the peak flood discharge, the time lag also indicated. In other words, in the SF, the change of channel bed indicates a phase lag with respect to the hydraulic condition. In the result of numerical simulation of CF, the speed of bar migration depending on the peak flood discharges decreased exponentially despite the repeated flood occurrences. In addition, as in the result of SF, the phase lag indicated, and the speed of bar migration decreased exponentially. The BRI increased with time changes, but the rate of increase in the BRI was modest despite the continuous peak flooding. Through this study, the morphological changes based on the hydrological characteristics of the river were analyzed numerically, and the methodology suggested that a quantitative prediction for the river bed change according to the flow characteristic can be applied to the field.

A Study of Life Safety Index Model based on AHP and Utilization of Service (AHP 기반의 생활안전지수 모델 및 서비스 활용방안 연구)

  • Oh, Hye-Su;Lee, Dong-Hoon;Jeong, Jong-Woon;Jang, Jae-Min;Yang, Sang-Woon
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.864-881
    • /
    • 2021
  • Purpose: This study aims is to provide a total care solution preventing disaster based on Big Data and AI technology and to service safety considered by individual situations and various risk characteristics. The purpose is to suggest a method that customized comprehensive index services to prevent and respond to safety accidents for calculating the living safety index that quantitatively represent individual safety levels in relation to daily life safety. Method: In this study, we use method of mixing AHP(Analysis Hierarchy Process) and Likert Scale that extracted from consensus formation model of the expert group. We organize evaluation items that can evaluate life safety prevention services into risk indicators, vulnerability indicators, and prevention indicators. And We made up AHP hierarchical structure according to the AHP decision methodology and proposed a method to calculate relative weights between evaluation criteria through pairwise comparison of each level item. In addition, in consideration of the expansion of life safety prevention services in the future, the Likert scale is used instead of the AHP pair comparison and the weights between individual services are calculated. Result: We obtain result that is weights for life safety prevention services and reflected them in the individual risk index calculated through the artificial intelligence prediction model of life safety prevention services, so the comprehensive index was calculated. Conclusion: In order to apply the implemented model, a test environment consisting of a life safety prevention service app and platform was built, and the efficacy of the function was evaluated based on the user scenario. Through this, the life safety index presented in this study was confirmed to support the golden time for diagnosis, response and prevention of safety risks by comprehensively indication the user's current safety level.

Analysis of domestic water usage patterns in Chungcheong using historical data of domestic water usage and climate variables (생활용수 실적자료와 기후 변수를 활용한 충청권역 생활용수 이용량 패턴 분석)

  • Kim, Min Ji;Park, Sung Min;Lee, Kyungju;So, Byung-Jin;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Persistent droughts due to climate change will intensify water shortage problems in Korea. According to the 1st National Water Management Plan, the shortage of domestic and industrial waters is projected to be 0.07 billion m3/year under a 50-year drought event. A long-term prediction of water demand is essential for effectively responding to water shortage problems. Unlike industrial water, which has a relatively constant monthly usage, domestic water is analyzed on monthly basis due to apparent monthly usage patterns. We analyzed monthly water usage patterns using water usage data from 2017 to 2021 in Chungcheong, South Korea. The monthly water usage rate was calculated by dividing monthly water usage by annual water usage. We also calculated the water distribution rate considering correlations between water usage rate and climate variables. The division method that divided the monthly water usage rate by monthly average temperature resulted in the smallest absolute error. Using the division method with average temperature, we calculated the water distribution rates for the Chungcheong region. Then we predicted future water usage rates in the Chungcheong region by multiplying the average temperature of the SSP5-8.5 scenario and the water distribution rate. As a result, the average of the maximum water usage rate increased from 1.16 to 1.29 and the average of the minimum water usage rate decreased from 0.86 to 0.84, and the first quartile decreased from 0.95 to 0.93 and the third quartile increased from 1.04 to 1.06. Therefore, it is expected that the variability in monthly water usage rates will increase in the future.