• Title/Summary/Keyword: Scenario prediction

Search Result 277, Processing Time 0.029 seconds

Model-Prediction-based Collision-Avoidance Algorithm for Excavators Using the RLS Estimation of Rotational Inertia (회전관성의 순환최소자승 추정을 이용한 모델 예견 기반 굴삭기의 충돌회피 알고리즘 개발)

  • Oh, Kwang Seok;Seo, Jaho;Lee, Geun Ho
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.59-67
    • /
    • 2016
  • This paper proposes a model-prediction-based collision-avoidance algorithm for excavators for which the recursive-least-squares (RLS) estimation of the excavator's rotational inertia is used. To estimate the rotational inertia of the excavator, the RLS estimation with multiple forgetting and two updating rules for the nominal parameter and the forgetting factors was conducted based on the excavator-swing dynamics. The average value of the estimated rotational inertia that is for the minimizing effects of the estimation error was computed using the recursive-average method with forgetting. Based on the swing dynamics, the computed average of the rotational inertia, the damping coefficient for braking, and the excavator's braking angle were predicted, and the predicted braking angle was compared with the detected-object angle for a safety evaluation. The safety level defined in this study consists of the three levels safe, warning, and emergency braking. The analytical rotational-inertia-based performance evaluation of the designed estimation algorithm was conducted using a typical working scenario. The results of the safety evaluation show that the predictive safety-evaluation algorithm of the proposed model can evaluate the safety level of the excavator during its operation.

Laser-Scanner-based Stochastic and Predictive Working-Risk-Assessment Algorithm for Excavators (굴삭기를 위한 레이저 스캐너 기반 확률 및 예견 작업 위험도 평가 알고리즘 개발)

  • Oh, Kwang Seok;Park, Sung Youl;Seo, Ja Ho;Lee, Geun Ho;Yi, Kyong Su
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.14-22
    • /
    • 2016
  • This paper presents a stochastic and predictive working-risk-assessment algorithm for excavators based on a one-layer laser scanner. The one-layer laser scanner is employed to detect objects and to estimate an object's dynamic behaviors such as the position, velocity, heading angle, and heading rate. To estimate the state variables, extended and linear Kalman filters are applied in consideration of laser-scanner information as the measurements. The excavator's working area is derived based on a kinematic analysis of the excavator's working parts. With the estimated dynamic behaviors and the kinematic analysis of the excavator's working parts, an object's behavior and the excavator's working area such as the maximum, actual, and predicted areas are computed for a working risk assessment. The four working-risk levels are defined using the predicted behavior and the working area, and the intersection-area-based quantitative-risk level has been computed. An actual test-data-based performance evaluation of the designed stochastic and predictive risk-assessment algorithm is conducted using a typical working scenario. The results show that the algorithm can evaluate the working-risk levels of the excavator during its operation.

Simulation of Inundation at Mokpo City Using a Coupled Tide-Surge Model (조석-해일 결합모형을 이용한 목포시 범람 모의)

  • Park, Seon-Jung;Kang, Ju-Whan;Moon, Seung-Rok;Kim, Yang-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.93-100
    • /
    • 2011
  • A coupled tide-surge model, which has been evaluated the utility in the previous study, is applied for simulating the inundation phenomena. The coupled model system adopts the hydrodynamic module of MIKE21 software, and the study area is identical to the previous study. The only difference is additional detailed areas for simulating inundation. An artificial scenario of a virtual typhoon striking Mokpo coastal zone at spring high tide is simulated. Then the calculated water level corresponds to the extreme high water level(556 cm) for 100 year return period. The result also shows the inundation depth is 50~100 cm not only near the Mokpo Inner Port but also near the Mokpo North Port. Finally, the coastal inundation prediction map is drawn on the basis of inundation simulation results.

Face and Hand Tracking Algorithm for Sign Language Recognition (수화 인식을 위한 얼굴과 손 추적 알고리즘)

  • Park, Ho-Sik;Bae, Cheol-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1071-1076
    • /
    • 2006
  • In this paper, we develop face and hand tracking for sign language recognition system. The system is divided into two stages; the initial and tracking stages. In initial stage, we use the skin feature to localize face and hands of signer. The ellipse model on CbCr space is constructed and used to detect skin color. After the skin regions have been segmented, face and hand blobs are defined by using size and facial feature with the assumption that the movement of face is less than that of hands in this signing scenario. In tracking stage, the motion estimation is applied only hand blobs, in which first and second derivative are used to compute the position of prediction of hands. We observed that there are errors in the value of tracking position between two consecutive frames in which velocity has changed abruptly. To improve the tracking performance, our proposed algorithm compensates the error of tracking position by using adaptive search area to re-compute the hand blobs. The experimental results indicate that our proposed method is able to decrease the prediction error up to 96.87% with negligible increase in computational complexity of up to 4%.

Intelligent Navigation Safety Information System based on Information-Fusion Technology (정보융합 기술 기반의 지능형 항행안전정보 시스템)

  • Kim, Do-Yeon;Jo, Dae-Woon;Yi, Mi-Ra;Park, Gaei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.226-233
    • /
    • 2010
  • The study of information fusion technology, which merges various types of data to recognize a situation more exactly, has begun in the area of national defense. Recently, the concept of information fusion is getting applied to other fields, and we are interested in maritime safety. In navigation, officers receive data about inside and outside of ship from several devices in bridge, and use it to recognize and predict the safety situation. However, too much and fast updated data might even fatigue mates, and there is the problem of inconsistency among data from several types of devices. This paper introduce how can use information fusion technology for the situation awareness and prediction of navigation safety, and show the realization possibility of Intelligent Navigation Safety Information System through an information fusion example in a specific situation scenario.

Prediction of Landslides Occurrence Probability under Climate Change using MaxEnt Model (MaxEnt 모형을 이용한 기후변화에 따른 산사태 발생가능성 예측)

  • Kim, Hogul;Lee, Dong-Kun;Mo, Yongwon;Kil, Sungho;Park, Chan;Lee, Soojae
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.39-50
    • /
    • 2013
  • Occurrence of landslides has been increasing due to extreme weather events(e.g. heavy rainfall, torrential rains) by climate change. Pyeongchang, Korea had seriously been damaged by landslides caused by a typhoon, Ewiniar in 2006. Moreover, the frequency and intensity of landslides are increasing in summer due to torrential rain. Therefore, risk assessment and adaptation measure is urgently needed to build resilience. To support landslide adaptation measures, this study predicted landslides occurrence using MaxEnt model and suggested susceptibility map of landslides. Precipitation data of RCP 8.5 Climate change scenarios were used to analyze an impact of increase in rainfall in the future. In 2050 and 2090, the probability of landslides occurrence was predicted to increase. These were due to an increase in heavy rainfall and cumulative rainfall. As a result of analysis, factors that has major impact on landslide appeared to be climate factors, prediction accuracy of the model was very high(92%). In the future Pyeongchang will have serious rainfall compare to 2006 and more intense landslides area expected to increase. This study will help to establish adaptation measure against landslides due to heavy rainfall.

Prediction for Future Housing using Delphi Technique (델파이 기법을 활용한 미래주거예측)

  • An, Se-Yun;Ju, Hannah;Kim, So-Yeon
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.209-222
    • /
    • 2020
  • The purpose of this paper is to predict the future changes of housing through the Delphi technique. The targets to predict were set by housing type, housing space, housing demand, and architectural technology. The results were as follows: ① The influences of social and value perspectives on the change of housing type, space, and demand would be high, on the other hands, the influence of political perspective would be low. ② In terms of housing type, the increase in demand for downsizing housing for high-rise buildings and the possibility of realizing remote medical support services and homecare using big data are highly predicted. That is, ③ it is anticipated that IoTs will have a significant influences on future housing changes, and ④ enactment of co-housing and related laws by the sharing economy, services for maintenance through the supply of high-rise and high-density homes, housing support for residents, and advanced lease markets by developed architectural technology are expected as anticipated forms of future housing.

Damage Effects Modeling by Chlorine Leaks of Chemical Plants (화학공장의 염소 누출에 의한 피해 영향 모델링)

  • Jeong, Gyeong-Sam;Baik, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.76-87
    • /
    • 2018
  • This study describes the damage effects modeling for a quantitative prediction about the hazardous distances from pressurized chlorine saturated liquid tank, which has two-phase leakage. The heavy gas, chlorine is an accidental substance that is used as a raw material and intermediate in chemical plants. Based on the evaluation method for damage prediction and accident effects assessment models, the operating conditions were set as the standard conditions to reveal the optimal variables on an accident due to the leakage of a liquid chlorine storage vessel. A model of the atmospheric diffusion model, ALOHA (V5.4.4) developed by USEPA and NOAA, which is used for a risk assessment of Off-site Risk Assessment (ORA), was used. The Yeosu National Industrial Complex is designated as a model site, which manufactures and handles large quantities of chemical substances. Weather-related variables and process variables for each scenario need to be modelled to derive the characteristics of leakage accidents. The estimated levels of concern (LOC) were calculated based on the Gaussian diffusion model. As a result of ALOHA modeling, the hazardous distance due to chlorine diffusion increased with increasing air temperature and the wind speed decreased and the atmospheric stability was stabilized.

Visualization using Emotion Information in Movie Script (영화 스크립트 내 감정 정보를 이용한 시각화)

  • Kim, Jinsu
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.69-74
    • /
    • 2018
  • Through the convergence of Internet technology and various information technologies, it is possible to collect and process vast amount of information and to exchange various knowledge according to user's personal preference. Especially, there is a tendency to prefer intimate contents connected with the user's preference through the flow of emotional changes contained in the movie media. Based on the information presented in the script, the user seeks to visualize the flow of the entire emotion, the flow of emotions in a specific scene, or a specific scene in order to understand it more quickly. In this paper, after obtaining the raw data from the movie web page, it transforms it into a standardized scenario format after refining process. After converting the refined data into an XML document to easily obtain various information, various sentences are predicted by inputting each paragraph into the emotion prediction system. We propose a system that can easily understand the change of the emotional state between the characters in the whole or a specific part of the various emotions required by the user by mixing the predicted emotions flow and the amount of information included in the script.

A SE Approach for Real-Time NPP Response Prediction under CEA Withdrawal Accident Conditions

  • Felix Isuwa, Wapachi;Aya, Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.75-93
    • /
    • 2022
  • Machine learning (ML) data-driven meta-model is proposed as a surrogate model to reduce the excessive computational cost of the physics-based model and facilitate the real-time prediction of a nuclear power plant's transient response. To forecast the transient response three machine learning (ML) meta-models based on recurrent neural networks (RNNs); specifically, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and a sequence combination of Convolutional Neural Network (CNN) and LSTM are developed. The chosen accident scenario is a control element assembly withdrawal at power concurrent with the Loss Of Offsite Power (LOOP). The transient response was obtained using the best estimate thermal hydraulics code, MARS-KS, and cross-validated against the Design and control document (DCD). DAKOTA software is loosely coupled with MARS-KS code via a python interface to perform the Best Estimate Plus Uncertainty Quantification (BEPU) analysis and generate a time series database of the system response to train, test and validate the ML meta-models. Key uncertain parameters identified as required by the CASU methodology were propagated using the non-parametric Monte-Carlo (MC) random propagation and Latin Hypercube Sampling technique until a statistically significant database (181 samples) as required by Wilk's fifth order is achieved with 95% probability and 95% confidence level. The three ML RNN models were built and optimized with the help of the Talos tool and demonstrated excellent performance in forecasting the most probable NPP transient response. This research was guided by the Systems Engineering (SE) approach for the systematic and efficient planning and execution of the research.