• Title/Summary/Keyword: Scenario prediction

Search Result 277, Processing Time 0.026 seconds

System dynamic modeling and scenario simulation on Beijing industrial carbon emissions

  • Wen, Lei;Bai, Lu;Zhang, Ernv
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.355-364
    • /
    • 2016
  • Beijing, as a cradle of modern industry and the third largest metropolitan area in China, faces more responsibilities to adjust industrial structure and mitigate carbon emissions. The purpose of this study is aimed at predicting and comparing industrial carbon emissions of Beijing in ten scenarios under different policy focus, and then providing emission-cutting recommendations. In views of various scenarios issues, system dynamics has been applied to predict and simulate. To begin with, the model has been established following the step of causal loop diagram and stock flow diagram. This paper decomposes scenarios factors into energy structure, high energy consumption enterprises and growth rate of industrial output. The prediction and scenario simulation results shows that energy structure, carbon intensity and heavy energy consumption enterprises are key factors, and multiple factors has more significant impact on industrial carbon emissions. Hence, some recommendations about low-carbon mode of Beijing industrial carbon emission have been proposed according to simulation results.

A Reliability Verification of Screening Time Prediction Reporting of 'Cine-Hangeul'

  • Jeon, Byoung-Won
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.141-146
    • /
    • 2020
  • Cine-Hangeul is a program that can predict the running time of a movie based on the screenplay before production. This paper seeks to verify the prediction reporting function of Cine-Hangeul, which is the standard Korean screenplay format. Moreover, this paper presents a method to increase the accuracy of the Cine-Hangeul reporting function. The objective of this paper is to offer a correction method based on scientific evidence because the current Cine-Hangeul reporting function has many errors. The verification process for five scenarios and movies confirmed that the default setting value of Cine- Hangeul's screening time prediction reporting was many errors. Cine-Hangeul analyzes the amount of textual information to predict the time of the scene and the time of the dialogue and helps predict the total time of the movie. Therefore, if a certain amount of text information is not available, the accuracy is unreliable. The current Cine-Hangeul prediction report confirms that the efficiency is high when the scenario volume is about 90 to 100 pages. As a result, prediction of screening time by Cine-Hangeul, a Korean scenario standard format program, confirmed the verification that it could secure the same level of reliability as the actual screening time by correcting the reporting settings. This verification also affirms that when applying about 50 percent of the basic set of screening time reporting, it is almost identical to the screening time.

Dynamic performance prediction of a Supercritical oil firing boiler - Load Runback simulation in a 650MWe thermal power plant (초임계 오일 연소 보일러의 동특성 예측 연구 - 650MWe급 화력발전소의 Load Runback 모사)

  • Yang, Jongin;Kim, Jungrae
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.19-20
    • /
    • 2014
  • Boiler design should be desinged to maximize thermal efficiency of the system under imposed load requirement and a boiler should be validated for transient operation. If a proper prediction is possible on the transient behavior and transient characteristics of a boiler, one may asses the performance of boiler component, control logics and operation procedures. In this work, dynamic modeling method of boiler is presented and dynamic simulation of load runback scenario was carried out on suprecritical oil-firing boiler.

  • PDF

Joint streaming model for backchannel prediction and automatic speech recognition

  • Yong-Seok Choi;Jeong-Uk Bang;Seung Hi Kim
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.118-126
    • /
    • 2024
  • In human conversations, listeners often utilize brief backchannels such as "uh-huh" or "yeah." Timely backchannels are crucial to understanding and increasing trust among conversational partners. In human-machine conversation systems, users can engage in natural conversations when a conversational agent generates backchannels like a human listener. We propose a method that simultaneously predicts backchannels and recognizes speech in real time. We use a streaming transformer and adopt multitask learning for concurrent backchannel prediction and speech recognition. The experimental results demonstrate the superior performance of our method compared with previous works while maintaining a similar single-task speech recognition performance. Owing to the extremely imbalanced training data distribution, the single-task backchannel prediction model fails to predict any of the backchannel categories, and the proposed multitask approach substantially enhances the backchannel prediction performance. Notably, in the streaming prediction scenario, the performance of backchannel prediction improves by up to 18.7% compared with existing methods.

The Future Strategy of Semiconductor Companies with the Growth of Cloud Computing (클라우드 컴퓨팅 성장에 따른 반도체 기업들의 미래 전략)

  • Chung, Eui Young;Lee, Ki Baek;Zo, Hang Jung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.71-85
    • /
    • 2014
  • This study proposes the future strategy of semiconductor companies corresponding to the growth of cloud computing. Cloud computing is the delivery of IT resources such as hardware and software as a service rather than a product, and it is expected to significantly change the IT market. By employing the scenario planning method, this study develops a total of eight scenario cases, and presents the three possible scenarios including the best market, the worst market, and the neutral market scenario. This study suggests the future strategy of semiconductor companies based on the best market scenario (increasing firms' IT expenditure, increasing the complexity and performance of devices, the frequent replacement of devices). The suggested future strategy of semiconductor includes that the semiconductor companies need to strengthen their price competitiveness, secure the next generation technologies, and develop the better capability for market prediction with the growth of cloud computing. This study will help semiconductor companies set up the strategy direction of technology development, and understand the connections between cloud computing and the memory semiconductor industry. This study has practical implications for semiconductor industry to prepare for the future of cloud computing.

A Study on Development of Disney Animation's Box-office Prediction AI Model Based on Brain Science (뇌과학 기반의 디즈니 애니메이션 흥행 예측 AI 모형 개발 연구)

  • Lee, Jong-Eun;Yang, Eun-Young
    • Journal of Digital Convergence
    • /
    • v.16 no.9
    • /
    • pp.405-412
    • /
    • 2018
  • When a film company decides whether to invest or not in a scenario is the appropriate time to predict box office success. In response to market demands, AI based scenario analysis service has been launched, yet the algorithm is by no means perfect. The purpose of this study is to present a prediction model of movie scenario's box office hit based on human brain processing mechanism. In order to derive patterns of visual, auditory, and cognitive stimuli on the time spectrum of box office animation hit, this study applied Weber's law and brain mechanism. The results are as follow. First, the frequency of brain stimulation in the biggest box office movies was 1.79 times greater than that in the failure movies. Second, in the box office success, the cognitive stimuli codes are spread evenly, whereas in the failure, concentrated among few intervals. Third, in the box office success movie, cognitive stimuli which have big cognition load appeared alone, whereas visual and auditory stimuli which have little cognitive load appeared simultaneously.

A Prediction on Indoor Contaminant Diffusion Characteristics of a Training Ship by Mechanical Ventilation System (기계식 환기시스템에 의한 선내 오염물질 확산 특성 예측)

  • Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1124-1131
    • /
    • 2011
  • This study performed the prediction about the indoor contaminant's diffusion characteristics which can be affected by the mechanical ventilation system on a training ship. The results are as followings. It is clear that the contaminants are spread to most of the indoors, regardless of the contamination beginning zone. About 65~100 minutes later, the contaminant densities of whole indoor zones are evaluated as clean. Comparing the contamination beginning zone being located at higher deck(scenario A) to the contamination beginning zone being located at lower deck(scenario B), although the contaminant density by scenario A is 10 times higher than that by scenario B, the number of contaminated zones are 50% less. The contaminant densities are evaluated as to be rapidly decreased when the outside air induction ratio against design volume is over 75%.

Crime amount prediction based on 2D convolution and long short-term memory neural network

  • Dong, Qifen;Ye, Ruihui;Li, Guojun
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.208-219
    • /
    • 2022
  • Crime amount prediction is crucial for optimizing the police patrols' arrangement in each region of a city. First, we analyzed spatiotemporal correlations of the crime data and the relationships between crime and related auxiliary data, including points-of-interest (POI), public service complaints, and demographics. Then, we proposed a crime amount prediction model based on 2D convolution and long short-term memory neural network (2DCONV-LSTM). The proposed model captures the spatiotemporal correlations in the crime data, and the crime-related auxiliary data are used to enhance the regional spatial features. Extensive experiments on real-world datasets are conducted. Results demonstrated that capturing both temporal and spatial correlations in crime data and using auxiliary data to extract regional spatial features improve the prediction performance. In the best case scenario, the proposed model reduces the prediction error by at least 17.8% and 8.2% compared with support vector regression (SVR) and LSTM, respectively. Moreover, excessive auxiliary data reduce model performance because of the presence of redundant information.

A Study on Scenario to establish Coastal Inundation Prediction Map due to Storm Surge (폭풍해일에 의한 해안침수예상도 작성 시나리오 연구)

  • Moon, Seung-Rok;Kang, Tae-Soon;Nam, Soo-Yong;Hwang, Joon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.492-501
    • /
    • 2007
  • Coastal disasters have become one of the most important issues in every coastal country. In Korea, coastal disasters such as storm surge, sea level rise and extreme weather have placed many coastal regions in danger of being exposed or damaged during subsequent storms and gradual shoreline retreat. A storm surge is an onshore gush of water associated with a tow pressure weather system, typically in typhoon season. However, it is very difficult to predict storm surge height and inundation due to the irregularity of the course and intensity of a typhoon. To provide a new scheme of typhoon damage prediction model, the scenario which changes the central pressure, the maximum wind radius, the track and the proceeding speed by corresponding previous typhoon database, was composed. The virtual typhoon scenario database was constructed with individual scenario simulation and evaluation, in which it extracted the result from the scenario database of information of the hereafter typhoon and information due to climate change. This virtual typhoon scenario database will apply damage prediction information about a typhoon. This study performed construction and analysis of the simulation system with the storm surge/coastal inundation model at Masan coastal areas, and applied method for predicting using the scenario of the storm surge.

A Fundamental Study on the Construction Scenario for Prediction of Carbon Emissions in Construction Site (건설현장 시공과정의 탄소배출량 예측 시나리오 구축에 관한 연구)

  • Lee, Chung-Won;Lim, Hyo-Jin;Tae, Sung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.247-248
    • /
    • 2023
  • As carbon neutrality becomes an issue around the world, research is actively being conducted to achieve reduction targets for each industry by declaring 2050 carbon neutrality in Korea and implementing the greenhouse gas target management system and emission trading system. The construction industry quantitatively predicts and evaluates carbon emissions by stages through the evaluation of the entire building process, but research on this is insufficient in the case of the construction process. Therefore, as part of the research on predicting and reducing carbon emissions generated at construction sites, data from actual construction sites were collected to analyze the facilities and characteristics of each energy source, and a scenario was proposed to quantitatively predict the use of each energy source.

  • PDF