• Title/Summary/Keyword: Scavenging model

Search Result 271, Processing Time 0.022 seconds

Assessment of RNG Turbulence Model and the Effect of Inlet Pressure on Scavenging Flow (유니프로우 소기식 두상밸브형엔진에서 RNG 난류모델의 평가와 과급압력변화가 소기유동에 미치는 영향)

  • 조상무;허선철;박권하
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.68-81
    • /
    • 2000
  • Many studies for improving a scavenging efficiency have been executed by using simulative manner. This paper addresses to a scavenging process in a uniflow two stroke cycle engine. The Processes are simulated for scavenging pressure variation, after the assessment of turbulent models. The results have shown that employing RNG k-$\varepsilon$ model gave more accurate velocity profiles near the cylinder wall compared with the standard k-$\varepsilon$ model and the charged fresh air has increased with the scavenging pressure increase.

  • PDF

Simulation of the Gas Exchange Process in a Two - Stroke Cycle Diesel Engine (2행정 사이클 디젤기관의 가스교환과정 시뮬레이션)

  • 고대권;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.104-112
    • /
    • 1994
  • The scavenging efficiency has a great influence on the performance of a diesel engine, especially slow two-stroke diesel engines which are usually used as a marine propulsion power plant. And this is greatly affected by the conditions in the cylinder, scavenging manifold and exhaust manifold during the gas exchange process. There are many factors to affect on the scavenging efficiency and these factors interact each other very complicatedly. Therefore the simulation program of the gas exchange process is very useful to improve and predict the scavenging efficiency, due to the high costs associated with redesign and testing. In this paper, a three-zone scavenging model for two-stroke uniflow engines was developed to link a control-volume-type engine simulation program for performance prediction of long-stroke marine engines. In this model it was attempted to simulate the three different regions perceived to exist inside the cylinder during scavenging, namely the air, mixing and combystion products regions, by modeling each region as a seperate control volume. Finally the scavenging efficiency was compared with three type of scavenging modes, that is, pure displacement, partial mixing and prefect mixing.

  • PDF

Numerical Study of the Effect of Head Shapes on the Flow Field in a Cylinder of Two-Stroke Engine (헤드 형상에 따른 2행정기관 실린더내의 유동장에 대한 수치해석적 연구)

  • Kang, D.W.;Yang, H.C.;Chae, S.;Ryou, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.48-57
    • /
    • 1994
  • The specific power output and thermal effeciency of any two-stroke engine are dependent on its scavenging behavior. Among the many factors which influence on the scavenging process, the cylinder head shape is one of the important factor. Hence in this study three different type models of cylinder head shape which are the cylindrical, the spherical and the arbitrary shape are studied to show the effects of the turbulent scavenging process in the cylinder with one inlet port, two side ports and one exhaust port. A modified version of KIVA-II which strip out of or add planes of cells across the mesh above the piston for flow simulation of two-stroke engine is used. The $k-{\varepsilon}$ turbulent model is used. The results show that the flow in a two-stroke engine cylinder of the spherical head shape among the three different type model is a desirable for efficient scavenging.

  • PDF

Modeling Study on Dispersion and Scavenging of Traffic Pollutants at the Location Near a Busy Road

  • Ma, Chang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.272-279
    • /
    • 2015
  • The information about the dispersion and scavenging of traffic-related pollutants at the locations near busy expressways is very helpful to highway planners for developing better plans to reduce exposures to air pollution for people living as well as children attending schools and child care centers near roadways. The objective of the current study was to give information in the dispersion and scavenging of vehicle-derived pollutants at the region near a busy urban expressway by a combination of two different model calculations. The modified Gaussian dispersion model and the Lagrange type below-cloud scavenging model were applied to evaluate $NO_x$ dispersion and DEP (Diesel exhaust particles) wet removal, respectively. The highest $NO_x$ was marked 53.17 ppb within 20-30 meters from the target urban expressway during the heaviest traffic hours (08:00AM-09:00AM) and it was 2.8 times higher than that of really measured at a nearby ambient measuring station. The calculated DEP concentration in size-resolved raindrops showed a continuous decreasing with increasing raindrop size. Especially, a noticeable decrease was found between 0.2 mm and 1.0 mm raindrop diameter.

A Theoretical Study on Wet Scavenging of Atmospheric Aerosols by Rain Drops (대기에어로졸 입자의 이론적 강수세정에 관한 연구)

  • 박정호;최금찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • In this work, a theoretical model has been formulated which allows the study of the scavenging efficiencies of aerosol particles by the rain drops. Aerosol particles are scavenged by the simultaneous brownian diffusion, interception and inertial impaction force. In addition the calculations based on the collision efficiency model are carried out for the collision of aerosol particles with diameter range 0.01~30 $mu extrm{m}$ and rain drops with diameter 0.02$\times$$2^{n/3}$(n=1, 2, …, 17)cm. The results indicate that: (1) the below-cloud scavenging affects mainly the coarse particles (>3 ${\mu}{\textrm}{m}$), the fine particles remaining almost unchanged; (2) the scavenging efficiencies by below-cloud in the heavy rain (rain intensity, 10 mm/hr) surpass the efficiency found in the drizzle rain (rain intensity, 1 mm/hr).

  • PDF

Numerical Study on Transfer Port Design for Scavenging Performance in Small Two-stroke Engines (소형 2행정 엔진의 전송 포트 형상에 따른 소기 성능에 대한 수치 해석적 연구)

  • Kim, Cheonghwan;Park, Sungho;Kim, Myeongkyu;Ahn, Eunsoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.28-44
    • /
    • 2020
  • In this paper, the scavenging process of various transfer ports was evaluated to improve the performance of a small two-stroke engine for unmanned aerial vehicles. Three-dimensional computational fluid dynamics simulations were performed to four transfer ports for the evaluation, and a three-phase scavenging model was developed and applied to the simulation results for the quantitative comparison of scavenging performance. the short-circuit of fresh charge was restrained and an in-cylinder turbulent kinetic energy was enhanced by changing the transfer port. Also, a difference in the scavenging for each port were confirmed by applying the three-phase model to the simulation results.

A study on the scavenging characteristics in slow-speed two-stroke diesel engines (저속 2행정 디젤 기관의 소기 특성에 관한 연구)

  • 고대권;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.24-32
    • /
    • 1995
  • The scavenging characteristics have a great influence on the performance of a diesel engine, especially slow-speed two-stroke diesel engines which are usually used as a marine propulsion power plant, and they are greatly affected by the conditions in the cylinder, intake and exhaust manifolds, and the opening and closing timing of scavenging ports or exhaust valves during the gas exchange process. Besides, there are many other factors to affect the scavenging characteristics and these factors interact each other very complicatedly. Therefore the simulation program of the gas exchange process is very useful to improve and predict the scavenging characteristics, due to the high costs associated with redesign and testing. In this paper it was attenpted to investigate the effect of the variation of the pressure ratio of intake to exhaust manifolds, and the variation of the opening and closing timing of a exhaust valve by using a computational program for a three-zone scavenging model which was developed by authors. The computed results showed that the scavenging efficiency and delivery ratio increased considerably, but the trapping efficiency decreased with increasing of the pressure ratio of intake to exhaust manifolds. The scavenging efficiency, trapping efficiency, and th conditions of the cylinder gases were affected by the opening timing of the exhaust valve, but the delivery ratio by the closing timing.

  • PDF

Quantitative Structure-Activity Relationships for Radical Scavenging Activities of Flavonoid Compounds by GA-MLR Technique

  • Om, Ae-Son;Ryu, Jae-Chun;Kim, Jae-Hyoun
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.170-176
    • /
    • 2008
  • The quantitative structure-activity relationship (QSAR) of a set of 35 flavonoid compounds presenting antioxidant activity was established by means of Genetic Algorithm-Multiple Linear Regression (GA-MLR) technique. Four-parametric models for two sets of data, the 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity $(R^2=0.788,\;Q^2_{cv}=0.699\;and\;Q^2_{ext}=0.577)$ and scavenging activity of reactive oxgen species (ROS) induced by $H_2O_2 (R^=0.829,\;Q^2_{cv}=0.754\;and\;Q^2_{ext}=0.573)$ were obtained with low external predictive ability on a mass basis, respectively. Each model gave some different mechanistic aspects of the flavonoid compounds tested in terms of the radical scavenging activity. Topological charge, H-bonding complex and deprotonation processes were likely to be involved in the radical scavenging activity.

Estimation of 222Rn Concentration in the Lower Troposphere during Precipitation Using Wet Scavenging Model for its Decay Products

  • Takeyasu, Masanori;Takeishi, Minoru
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.1
    • /
    • pp.20-25
    • /
    • 2010
  • The gaseous $^{222}Rn$ concentration at the level of clouds was estimated by using the wet scavenging model of its decay products with the observed data of environmental radiation at the ground. And the origin of the $^{222}Rn$ was also discussed. The estimation was done for a precipitation event on Dec. 26-27, 2003, when a large increase of the radiation was observed in Tokai-mura in Ibaraki, Japan. From a backward trajectory analysis, the origin of $^{222}Rn$ atoms for that event was traced back to the northeastern part of China, and it was expected that the large amount of $^{222}Rn$ emitted in the northeastern part of China was transported to Tokai-mura by the Eurasian continental air mass.

ESTIMATION OF RAIN SCAVENGING RATIO FOR PARTICLE BOUND POLYCYCLIC AROMATIC HYDROCARBONS AND POLYCHLORINATED BIPHENYLS

  • Kim, Hyeon-Kook;Shin, Yong-Seung;Lee, Dong-Soo;Song, Byung-Joo;Kim, Jong-Guk
    • Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.33-44
    • /
    • 2006
  • The objective of this study was to develop and assess a method for estimating the rain scavenging ratios (RSRs) of particle-bound PAHs and PCBs using measured scavenging ratio of particulate matters (PM) and routinely available data of physico-chemical properties of PM. Paired atmospheric and rainwater sampling was conducted for a total of 4 rain events. Assuming equilibrium partitioning in rainwater-gas-PM system, an equation was derived for estimating the RSR of particle-bound chemicals as a function of RSR of PM and three equilibrium partition constants (i.e. dimensionless Henry's law constant, gas-particle partition coefficient, and water-particle partition coefficient). For all PAHs, the model significantly under-predicted the RSR while the model prediction for PCBs agreed with observation mostly within a factor of 5. The RSR model for the chemicals is of limited use as its accuracy critically depends on how close the observed partitioning of the chemicals in the gas-PM-rainwater system is to that estimated under the equilibrium assumption.