• Title/Summary/Keyword: Scavenging Mechanism

Search Result 177, Processing Time 0.031 seconds

Antioxidant Activities and Hepato-protective Effects of Stauntonia hexaphylla Fruit Extract Against H2O2-induced Oxidative Stress and Acetaminophen-induced Toxicity (멀꿀 열매 추출물의 항산화 활성 및 H2O2로 유도된 산화적 스트레스와 아세트아미노펜 독성 모델에서의 간 보호효과)

  • Lee, Gyuok;Kim, Jaeyong;Kang, Huwan;Bae, Donghyuck;Choi, Chul-yung
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.708-717
    • /
    • 2018
  • The antioxidant activity and protective effects of a hot water extract from the Stauntonia hexaphylla fruit (WESHF) were investigated in vitro and in vivo. The total polyphenol and flavonoid contents of WESHF were $16.13{\pm}0.27mg$ gallic acid equivalent/g and $4.7{\pm}0.80mg$ catechin equivalent/g, respectively. In addition, the DPPH radical-scavenging activity ($SC_{50}$) and the Oxygen Radical Absorbance capacity of WESHF were $63.62{\pm}4.10{\mu}g/ml$ and $90.63{\pm}5.29{\mu}M$ trolox equivalent/g, respectively. The hepatoprotective effect of WESHF against hydrogen peroxide-induced oxidative damage was investigated. $H_2O_2$-induced liver damage on HepG2 cells was prevented by $200{\mu}g/ml$ of WESHF. Furthermore, to investigate the protection mechanism of WESHF on hydrogen peroxide-induced cytotoxicity in HepG2 cells, pre-treatment with $200{\mu}g/ml$ of WESHF significantly attenuated a decrease in the activities of CAT, SOD, GR, and GPx. The hepatoprotective activity of WESHF was evaluated in an experimental model of hepatic damage induced by acetaminophen (APAP). The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly decreased in the livers of mice treated with 200 mg/kg of WESHF compared to the APAP-treated group. The lipid peroxidation level, which increased after APAP administration, was significantly reduced in the WESHF group. In addition, histological examinations of the liver showed the same protective effect of WESHF treatment. Based on these findings, it is suggested that WESHF has potent hepatoprotective effects, and the mechanism that causes this type of protection could be related to antioxidant pathways.

New Whitening Agent From Pimpinella brachycarpa (참나물추출물의 멜라닌 생성저해 효과)

  • Kim, Jin-Hwa;Sim, Gwan-Sub;Lee, Dong-Hwan;Lee, Geun-Soo;Lee, Bum-Chun;Pyo, Hyeong-Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.3
    • /
    • pp.203-208
    • /
    • 2007
  • To develop a new whitening agent for cosmetics from natural products, Pimpinella brachcarpa was selected for its inhibitory effect on melanogenesis in B16 melanoma cells. Crude ethanolic extract of P. brachycarpa and its four fractions-hexane, ethyl acetate(EtOAc), butanol and aqueous were evaluated for antioxidative effects and tyrosinase inhibitory activity. To elucidate the mechanism of active compounds of P. brachycarpa, we investigated the changes in protein level of tyrosinase, TRP-1 and TRP-2 using Western blotting and the changes in mRNA level of tyrosinase using RT-PCR technique. Following UV irradiation, expression of ET-1 in HaCaT keratinocytes was measured by quantitative enzyme immunoassay(EIA) using human ET-1 antibody. Crude ethanolic extract of P. brachycarpa and its four fractions-hexane, EtOAc, butanol and aqueous had free radical scavenging effect by 87.2, 2.5, 97.2, 80.5, 49.8% at 100 ${\mu}g/mL$ and tyrosinase inhibitory effect by 18.3, 15.1, 55.4, 13.1, 0 % at 100 ${\mu}g/mL$. P. brachycarpa EtOAc fraction significantly inhibited melanin production in B16 melanoma cells. Treatment with P. brachycarpa extract for 72 h suppressed the biosynthesis of melanin up to 58 % at 100 ${\mu}g/mL$. Especially, the EtOAc fraction of P. brachycarpa reduced the tyrosinase activity and tyrosinase expression in B16 melanoma cells in a dose-dependent manner. mRNA levels of tyrosinase and TRP-1 were markedly reduced by the EtOAc fraction of P. brachycarpa. Moreover, at the concentrations of $12.5{\sim}50{\mu}g/mL$ of the fraction, the production of UV-induced ET-1 in HaCaT keratinocytes(24 h after 8 $mJ/cm^2$ UVB irradiation) was reduced about 40%(p<0.05). P. brachycarpa could be used as a new natural skin-whitening agent due to the inhibitory effect of on melanin biosynthesis and endothelin-1 expression.

Effects of Various Environmental Stresses on the Peroxidase Activities from Rice Seedlings (여러 가지 환경스트레스가 벼 유묘 퍼옥시다제 활성에 미치는 영향)

  • 이정애;신현웅;이미영
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.3
    • /
    • pp.331-336
    • /
    • 2000
  • In order to examine the effect of SO$_2$, which is the major component of acid rain, on the peroxidase activity, rice (Oryza sativa) seedlings were grown on the media containing various concentrations of Na$_2$SO$_3$. Na$_2$SO$_3$ concentrations needed for the 50% inhibition of rice seed germination were determined to be 300$\mu\textrm{g}$/ml at pH 7, 8$\mu\textrm{g}$/ml at pH 5 and 2$\mu\textrm{g}$/ml at pH 3. Notably, about 8 fold and 4 fold increase of the specific activity of the enzyme were observed with the seedlings treated with 8$\mu\textrm{g}$/ml Na$_2$SO$_3$ at pH 5 and 2$\mu\textrm{g}$/ml Na$_2$SO$_3$ at pH 3, respectively. The effects of Cd and Pb on the peroxidase activities and chlorophyll contents were also examined. About 3.9 fold higher peroxidase activities were found at 0.03mM Cd, and the chlorophyll contents were reduced to 63% of the control seedlings. At 0.04mM Pb, 2.5 fold higher enzyme activities were found and the chlorophyll contents were reduced to 72%. Therefore, the increases of rice peroxidase activities might be involved in the defense mechanism of the cell against various environmental stresses such as Na$_2$SO$_3$, Cd and Pb. The effects of Cu and Fe, which are the inducers of oxidative stresses by the generations of reactive oxygen species, on the peroxidase activities were also investigated. About 57% and 65% activity losses were found at 0.5mM CuSO$_4$ and 0.5mM FeSO$_4$, respectively, and radical scavenger ethanol almost completely protected both inactivations. However, dimethyl sulfoxide, mannitol, thiourea and histidine showed different radical scavenging effects one another against Cu and Fe inactivation.

  • PDF

Adsorption of Arsenic on Goethite (침철석(goethite)과 비소의 흡착반응)

  • Kim, Soon-Oh;Lee, Woo-Chun;Jeong, Hyeon-Su;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.177-189
    • /
    • 2009
  • Iron (oxyhydr)oxides commonly form as secondary minerals of high reactivity and large surface area resulting from alteration and weathering of primary minerals, and they are efficient sorbents for inorganic and organic contaminants. Accordingly, they have a great potential in industrial applications and are also of substantial interest in environmental sciences. Goethite (${\alpha}$-FeOOH) is one of the most ubiquitous and stable forms of iron (oxyhydr)oxides in terrestrial soils, sediments, and ore deposits, as well as a common weathering product in rocks of all types. This study focused on adsorption reaction as a main mechanism in scavenging arsenic using goethite. Goethite was synthesized in the laboratory to get high purity, and a variety of mineralogical and physicochemical features of goethite were measured and related to adsorption characteristics of arsenic. To compare differences in adsorption reactions between arsenic species, in addition, a variety of experiments to acquire adsorption isotherm, adsorption edges, and adsorption kinetics were accomplished. The point of zero charge (PZC) of the laboratory-synthesized goethite was measured to be 7.6, which value seems to be relatively higher, compared to those of other iron (oxyhydr)oxides. Its specific surface area appeared to be $29.2\;m^2/g$ and it is relatively smaller than those of other (oxyhydr)oxides. As a result, it was speculated that goethite shows a smaller adsorption capacity. It is likely that the affinity of goethite is much more larger for As(III) (arsenite) than for As(V) (arsenate), because As(III) was observed to be much more adsorbed on goethite than As(V) in equivalent pH conditions. When the adsorption of each arsenic species onto goethite was characterized in various of pH, the adsorption of As(III) was largest in neutral pH range (7.0~9.0) and decreased in both acidic and alkaline pH conditions. In the case of As(V), the adsorption appeared to be highest in the lowest pH condition, and then decreased with an increase of pH. This peculiarity of arsenic adsorption onto goethite might be caused by macroscopic electrostatic interactions due to variation in chemical speciation of arsenic and surface charge of goethite, and also it is significantly affected by change in pH. Parabolic diffusion model was adequate to effectively evaluate arsenic adsorption on goethite, and the regression results show that the kinetic constant of As(V) is larger than that of As(III).

Sargassum sp. Attenuates Oxidative Stress and Suppresses Lipid Accumulation in vitro (모자반추출물의 항산화활성 및 지방세포 생성억제 효과)

  • Kim, Jung-Ae;Karadeniz, Fatih;Ahn, Byul-Nim;Kwon, Myeong Sook;Mun, Ok-Ju;Kim, Mihyang;Lee, Sang-Hyeon;Yu, Ki Hwan;Kim, Yuck Yong;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.274-283
    • /
    • 2014
  • Oxidative stress causes tissue damage and facilitates the progression of metabolic diseases, including diabetes, cardiovascular heart diseases, and obesity. Lipid accumulation and obesity-related complications have been observed in the presence of extensive oxidative stress. As part of an ongoing study to develop therapeutic supplements, Sargassum sp. were tested for their ability to scavenge free radicals and intracellular reactive oxygen species (ROS), as well as to suppress lipid accumulation. Three species, S. hemiphyllum, S. thunbergii, and Sargassum horneri, were shown to scavenge free radicals in a di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) assay. In addition, Sargassum sp. was shown to scavenge intracellular ROS and to decrease nitric oxide (NO) production in $H_2O_2$ and lipopolysaccharide (LPS)-induced in RAW264.7 mouse macrophages, respectively. Taken together, the results suggest that Sargassum sp. possess huge potential to relieve oxidative stress and related complications, as well as lipid-induced oxidation. They indicate that S. hemiphyllum, S. thunbergii, and S. horneri are potent functional supplements that can produce beneficial health effects through antioxidant and antiobesity activities, with S. hemiphyllum being the most potent among the Sargassum sp. tested. A potential mechanism for the effect of Sargassum sp. on the suppression of lipid accumulation in differentiating 3T3-L1 mouse preadipocytes through deactivation of the peroxisome proliferator-activated receptor ${\gamma}$ (PPAR ${\gamma}$) is presented.

Anti-oxidative and Anti-cancer Activities of Ethanol Extract of Litsea populifolia (인체 폐암 세포주 A549에서 Litsea populifolia 추출물의 항산화 및 항암활성 분석)

  • Jin, Soojung;Oh, You Na;Jeong, Hyun Young;Yun, Hee Jung;Park, Jung-ha;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.679-687
    • /
    • 2019
  • Litsea populifolia, a plant species of the Lauraceae family, is widely distributed in the tropical and subtropical areas of Asia. The phylogenetic relationships and botanical characteristics of L. populifolia have been reported; however, its anti-oxidative and anti-cancer activities remain unclear. In this study, we evaluated the anti-oxidative and anti-cancer effects of ethanol extracts of L. populifolia (EELP) together with the molecular mechanism of its anti-cancer activity in human lung adenocarcinoma A549 cells. EELP showed significant anti-oxidative effects with a 50% inhibitory concentration at $11.71{\mu}g/ml$, which was measured by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. EELP exhibited cytotoxic activity and induced cell cycle arrest at the G1 phase in A549 cells in a dose-dependent manner, whereas EELP did not have the cytotoxic effect on the normal human lung cell line IMR90. Treatment with EELP also resulted in a decreased expression of G1/S transition-related molecules-including cyclin-dependent kinase (CDK) 2, CDK6, cyclin D1, and cyclin E-both for the transcription and translation levels. EELP-induced G1 arrest was associated with the phosphorylation of checkpoint kinase 2 (CHK2), p53, cell division cycle 25 homolog A (CDC25A), and the reduction of CDC25A expression in A549 cells. Collectively, these results suggest that EELP may exert an anti-cancer effect by cell cycle arrest at the G1 phase through both p53-dependent and p53-independent (ATM/CHK2/CDC25A/CDK2) pathways in A549 cells.

Antioxidant and Anticancer Activities of Euonymus porphyreus Extract in Human Lung Cancer Cells A549 (인체 폐암 세포주 A549에서 Euonymus porphyreus 추출물의 항산화 및 항암활성 분석)

  • Jin, Soojung;Oh, You Na;Son, Yu Ri;Bae, Soobin;Park, Jung-ha;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.199-208
    • /
    • 2021
  • Euonymus porphyreus, a species of plant in the Celastraceae family, is widely distributed in East Asia, especially in Southern China. The botanical characteristics of E. porphyreus have been reported, but its antioxidative and anticancer activities remain unclear. In this study, we evaluated the antioxidative and anticancer effects of ethanol extracts of E. porphyreus (EEEP) and the molecular mechanism of its anticancer activity in human lung adenocarcinoma A549 cells. The total polyphenol and flavonoid compound contents from EEEP were 115.42 mg/g and 23.07 mg/g, respectively. EEEP showed significant antioxidative effects with a concentration at 50% of the inhibition (IC50) value of 11.09 ㎍/ml, as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. EEEP showed cytotoxic activity by increasing the SubG1 cell population of A549 cells in a dose-dependent manner. Apoptosis in A549 cells treated with EEEP was evident due to increased apoptotic cells and apoptotic bodies, as detected by Annexin V and 4,6-diamidino-2-phenylindole (DAPI) staining, respectively. EEEP-induced apoptosis resulted in increased expression of the First apoptosis signal (Fas), p53, and Bax, with decreased expression of Bcl-2 and subsequent activation of caspase-8, -9, and caspase-3, leading to cleavage of poly (ADP-ribose) polymerase (PARP). Collectively, these results suggest that EEEP may exert an anticancer effect by inducing apoptosis in A549 cells through both intrinsic and extrinsic pathways.