• Title/Summary/Keyword: Scavenger

Search Result 545, Processing Time 0.041 seconds

Study of Antimicrobial and Antioxidant Activities of Rumex crispus Extract (소리쟁이 추출물의 항균 및 항산화 활성에 관한 연구)

  • Jeong, Gwi-Taek;Lee, Kyoung-Min;Park, Don-Hee
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.81-86
    • /
    • 2006
  • This study was carried out to investigate the antimicrobial and antioxidant activities for applications of food additives and medicine using Rumex crispus which widely grown in domestic area. Antimicrobial activities of extract fractions were observed in all microbial species except for Pseudomonas areuginosa. Especially, Vibrio vulificus and Saccharomyces cerevisiae presented obvious antimicrobial activity. Antioxidant activities of the fractions of R. crispus extract were determined by DPPH radical scavenger activity. The fraction of ethyl acetate was presented similar antioxidant activities compared with that of BHA and ascorbic acid. Also, ethyl acetate fraction contained higher phenolic compounds than that of others. The antioxidant activity in the fractions of R. crispus extract was closely related with the content of phenolic compounds in that.

Subsurface Water Storage Using Coastal Aquifers Filled With Saline Water (염수로 포화된 해안지역 대수층을 활용한 수자원확보 방안)

  • Jung, Eun Tae;Park, Namsik;Kim, In Chul;Lee, Seoung Hwi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.353-357
    • /
    • 2015
  • A new method is proposed for water resources using aquifers in coastal areas. These aquifers are generally filled with saline water due to seawater intrusion and consequently being left unutilized. Surface water can be injected into these aquifers and recovered for water quality enhancement and stored water. Injection and pumping wells are used. For this technique to be successful protection of pumping well from seawater intrusion is an essential issue. Salt water pumping can be used to prevent saline water upconing. Numerical analysis demonstrated that a properly designed and executed salt water pumping well can protect a freshwater pumping well from salt water intrusion.

Peroxynitrite Scavenging Mechanism of Zingiberis Rhizoma (생강(生薑)의 Peroxynitrite 제거 기전)

  • Shin Sang-Guk;Jeong Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.75-83
    • /
    • 2003
  • Objectives : Peroxynitrite($ONOO^-$), formed from the reaction of $O2^-$ and NO, is a cytotoxic species that can oxidize several cellular components such as proteins, lipids and DNA. It has been involved in the aging process and age-related diseases such as Alzheimer's disease, rheumatoid arthritis, cancer and atherosclerosis. The aim of this study was to investigate scavenging activities of $ONOO^-$ and its precursors, NO and $O_{2^-}$ and its scavenging mechanism of Zingiberis Rhizoma (ZR). Methods : To investigate scavenging activities of $ONOO^-,\;NO,\;O_{2^-}$ and its scavenging mechanism, we used fluorescent probes like DCFDA, DAF-2 and DHR 123. The $ONOO^-$ scavenging activity on ZR was assayed by measuring oxidized dihydrorhodamine 123 (DHR 123) by fluorometry. The scavenging efficacy was expressed as IC50, showing the concentration of each sample that is required to cause 50% inhibition of DHR 123 oxidation. In a separate study, the protective effect of ZR on $ONOO^-$-induced nitration of bovine serum albumin was investigated through immuno-assay with a monoclonal anti-nitryrosine antibody, and a horseradish peroxidase-conjugated anti-mouse secondary antibody from sheep. Results : ZR markedly scavenged authentic $ONOO^-,\;O_{2^-}$ and NO. It also inhibited $ONOO^-$ induced by $O_{2^-}$ and NO which are derived from SIN-1. The data demonstrated that ZR led to decreased $ONOO^-$ mediated nitration of tyrosine through electron donation. It also inhibited the nitration of bovine serum albumin induced by $ONOO^-$ in a dose-dependent manner. Furtheremore, it blocked LPS-induced ROS and RNS generation. Conclusions : These results suggest that ZR can be developed as an effective $ONOO^-$ scavenger for the prevention of aging process and age-related diseases.

  • PDF

Involvement of nitric oxide-induced NADPH oxidase in adventitious root growth and antioxidant defense in Panax ginseng

  • Tewari, Rajesh Kumar;Kim, Soohyun;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Plant Biotechnology Reports
    • /
    • v.2 no.2
    • /
    • pp.113-122
    • /
    • 2008
  • Nitric oxide (NO) affects the growth and development of plants and also affects plant responses to various stresses. Because NO induces root differentiation, we examined whether or not it is involved in increased ROS generation. Treatments with sodium nitroprusside (SNP), an NO donor, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific NO scavenger, and $N{\omega}-nitro-{\text\tiny{L}}-arginine$ methyl ester hydrochloride (${\text\tiny{L}}-NAME$), an NO synthase (NOS) inhibitor, revealed that NO is involved in the adventitious root growth of mountain ginseng. Supply of an NO donor, SNP, activates NADPH oxidase activity, resulting in increased generation of $O_2{^{{\cdot}-}}$, which subsequently induces growth of adventitious roots. Moreover, treatment with diphenyliodonium chloride (DPI), an NADPH oxidase inhibitor, individually or with SNP, inhibited root growth, NADPH oxidase activity, and $O_2{^{{\cdot}-}}$ anion generation. Supply of the NO donor, SNP, did not induce any notable isoforms of enzymes; it did, however, increase the activity of pre-existing bands of NADPH oxidase, superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase. Enhanced activity of antioxidant enzymes induced by SNP supply seems to be responsible for a low level of $H_2O_2$ in the adventitious roots of mountain ginseng. It was therefore concluded that NO-induced generation of $O_2{^{{\cdot}-}}$ by NADPH oxidase seems to have a role in adventitious root growth of mountain ginseng. The possible mechanism of NO involvement in $O_2{^{{\cdot}-}}$ generation through NADPH oxidase and subsequent root growth is discussed.

Nitric Oxide Synthase Inhibitor Decreases NMDA-Induced Elevations of Extracellular Glutamate and Intracellular $Ca^{2+}$ Levels Via a cGMP-Independent Mechanism in Cerebellar Granule Neurons

  • Oh, Sei-Kwan;Yun, Bong-Sik;Ryoo, In-Ja;Patrick P.McCaslin;Yoo, Ick-Dong
    • Archives of Pharmacal Research
    • /
    • v.22 no.1
    • /
    • pp.48-54
    • /
    • 1999
  • These studies were designed to examine the differential effect of nitric oxide (NO) and cGMP on glutamate neurotransmission. In primary cultures of rat cerebellar granule cells, the glutamate receptor agonist N-methyl-D-aspartate (NMDA) stimulates the elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), the release of glutamate, the synthesis of NO and an increase of cGMP. Although NO has been shown to stimulate guanylyl cyclase, it is unclear yet whether NO alters the NMDA-induced glutamate release and ${[Ca^{2+}]}_i$ elevation. We showed that the NO synthase inhibitor, NG-monomethyl-L-arginine (NMMA), partially prevented the NMDA-induced release of glutamate and elevation of ${[Ca^{2+}]}_i$ and completely blocked the elevation of cGMP. These effects of NO on glutamate release and [Ca2+]i elevation were unlikely to be secondary to cGMP as the cGMP analogue, dibutyryl cGMP (dBcGMP), did not suppress the effects of NMDA. Rather, dBcGMP slightly augmented the NMDA-induced elevation of ${[Ca^{2+}]}_i$ with no change in the basal level of glutamate or ${[Ca^{2+}]}_i$. The extracellular NO scavenger hydroxocobalamine prevented the NMDA-induced release of glutamate providing indirect evidence that the effect of NO may act on the NMDA receptor. These results suggest that low concentration of NO has a role in maintaining the NMDA receptor activation in a cGMP-independent manner.

  • PDF

Scavenging Activities of Reactive Oxygen and Nitrogen Species by Junglans sinensis (호도(胡桃)의 활성산소 및 활성질소 제거 기전)

  • Jeong Ji-Cheon;Bae Sung-Min;Shin Hyeon-Cheol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1615-1621
    • /
    • 2005
  • Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are widely implicated in the aging process and age-related diseases. The present study was carried out to investigate scavenging activities of Junglans sinensis extract and its subfraction using fluorescent probes, DCF-DA, DAF-2 and DHR 123. Jungians sinensis was washed and crushed. The crushed Junglans sinensis was extracted 3times, each time with 3 volumes of methyl alcohol at $60^{\circ}C$ for 24 h. The extract was filtered and evaporated under a reduced pressure using a rotary evaporator to yield 16 g. Scavenging activities of $ONOO^-$ was measured by Kooy' method and ROS was measured by DCFDA assay. Junglans sinensis had the marked scavenging activites of $ONOO^-$, NO and $O_2^-$. Junglans sinensis scavenged $ONOO^-$ through electron donation and dose-dependently inhibited the nitration of bovine serum albumin by $ONOO^-$. Junglans sinensis also had ROS scavenging activity. Especially, ethylacetate fraction of Junglans sinensis showed the most effective scavenging activities for ROS and RNS. These results suggest that Junglans sinensis might be developed as an effective ROS and RNS scavenger Therefore, Junglans sinensis might be used as a preventive agent for the aging and relevant to aging of illness.

Antioxidant Effects and Anti-inflammation Effects of Lophatheri Herba Water Extracts Via Reducing iNOS Synthesis Induced by LPS in RAW 264.7 Cell (담죽엽의 항산화 효과와 RAW 264.7 세포에서 LPS로 유도된 iNOS 발현에 미치는 영향)

  • Hwang, Sung-Yeoun;Lee, Sung-Won;Kwon, Kang-Beom;Choi, Won-Jong;Kim, Jae-Hyo;Ahn, Seong-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.976-982
    • /
    • 2010
  • We studied to know the anti-inflammation effect on water extracts of Lophatheri Herba which was growing in every places in our country. We objected free radical scanvenger effect and nitrite eliminate effect of the Lophatheri Herba water extracts, and the cell viabillity, the effects of Lophatheri Herba water extracts on NO production, iNOS synthesis induced by LPS. Free radical scavenger effects were $27.91{\pm}0.12%$, $38.96{\pm}0.10%$, $46.22{\pm}0.15%$ depend on 0.5, 1.0, 2.0 mg/ml each dose of Lophatheri Herba water extracts. Nitrite eliminate effects were $9.86{\pm}0.3%$, $80.61{\pm}0.23%$, $97.62{\pm}0.56%$ in 0.1, 1.0, 2.0 mg/ml Lophatheri Herba water extracts on pH 1.2. NO production and iNOS synthesis induced by LPS were reduced in RAW 264.7 cell by Lophatheri Herba water extracts. As the above results, Lophatheri Herba water extracts have anti-inflammation effects via NO production decrease, iNOS synthesis decrease mechanism. So Lophatheri Herba water extracts will be used as the protection or treatment in chronic inflammation desease like a asthma, stomatitis etc.

Roles of Reactive Oxygen Species on Neuronal Excitability in Rat Substantia Gelatinosa Neurons (척수 아교질 신경세포의 흥분성에 대한 활성산소종의 역할)

  • Choi, Jeong-Hee;Kim, Jae-Hyo;Lim, Sung-Jun;Park, Byung-Rim;Kwon, Kang-Beom
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.432-437
    • /
    • 2007
  • Reactive oxygen species (ROS) are toxic agents that may be involved in various neurodegenerative diseases. Recent studies indicate that ROS are also involved in persistent pain through a spinal mechanism. In the present study, whole cell patch clamp recordings were carried out on substantia gelatinosa (SG) neurons in spinal cord slice of neonatal rats to investigate the effects of ROS on neuronal excitability and excitatory synaptic transmission. In current clamp condition, tert-buthyl hydroperoxide (t-BuOOH), an ROS donor, induced a electrical hyperexcitability during t-BuOOH wash-out followed by a brief inhibition of excitability in SG neurons. Application of t-BuOOH depolarized membrane potential of SG neurons and increased the neuronal firing frequencies evoked by depolarizing current pulses. Phenyl-N-tert-buthylnitrone (PBN), an ROS scavenger, antagonized t-BuOOH induced hyperexcitability. IN voltage clamp conditions, t-BuOOH increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). In order to determine the site of action of t-BuOOH, miniature excitatory postsynaptic currents (mEPSCs) were recorded. t-BuOOH increased the frequency and amplitude of mEPSCs, indicating that it may modulate the excitability of the SG neurons via pre- and postsynaptic actions. These data suggest that ROS generated by peripheral nerve injury can induce central sensitization in spinal cord.

Degradation of Humic Acids by Ozone/high pH, Ozone/Hydrogen Peroxide and Ozone/Hydrogen Carbonate System ($O_3$/high pH, $O_3/H_2O_2$$O_3/{HCO_3}^-$ 시스템에서의 부식산의 분해 반응 특성)

  • Shin, Hyun Sang;Kim, Kei Woul;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.652-658
    • /
    • 2000
  • Chemical degradation of aqueous humic acid by ozonation was studied with respect to the direct reactions of ozone and the indirect reactions due to its preliminary decomposition to secondary oxidant, OH radical. This was characterized by analyzing TOC, $UV_{254}$ and ozone consumption measured in different experimental conditions in which ozone reacted in the presence of various concentrations of $H_2O_2$ and $HCO_3{^-}$ concentrations ranging from 20 to 100 mg/L. and different pH (5-9). The results suggest that the TOC removal is mainly dependent on indirect reactions of OH radical whereas $UV_{254}$ reduction is mainly dependent on direct reactions of ozone with humic acid molecules. It has been also found that ozone consumption was most likely to be affected by pH and alkalinity in the solution.

  • PDF

Condurango (Gonolobus condurango) Extract Activates Fas Receptor and Depolarizes Mitochondrial Membrane Potential to Induce ROS-dependent Apoptosis in Cancer Cells in vitro -CE-treatment on HeLa: a ROS-dependent mechanism-

  • Bishayee, Kausik;Mondal, Jesmin;Sikdar, Sourav;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.18 no.3
    • /
    • pp.32-41
    • /
    • 2015
  • Objectives: Condurango (Gonolobus condurango) extract is used by complementary and alternative medicine (CAM) practitioners as a traditional medicine, including homeopathy, mainly for the treatment of syphilis. Condurango bark extract is also known to reduce tumor volume, but the underlying molecular mechanisms still remain unclear. Methods: Using a cervical cancer cell line (HeLa) as our model, the molecular events behind condurango extract's (CE's) anticancer effect were investigated by using flow cytometry, immunoblotting and reverse transcriptase-polymerase chain reaction (RT-PCR). Other included cell types were prostate cancer cells (PC3), transformed liver cells (WRL-68), and peripheral blood mononuclear cells (PBMCs). Results: Condurango extract (CE) was found to be cytotoxic against target cells, and this was significantly deactivated in the presence of N-acetyl cysteine (NAC), a scavenger of reactive oxygen species (ROS), suggesting that its action could be mediated through ROS generation. CE caused an increase in the HeLa cell population containing deoxyribonucleic acid (DNA) damage at the G zero/Growth 1 (G0/G1) stage. Further, CE increased the tumor necrosis factor alpha ($TNF-{\alpha}$) and the fas receptor (FasR) levels both at the ribonucleic acid (RNA) and the protein levels, indicating that CE might have a cytotoxic mechanism of action. CE also triggered a sharp decrease in the expression of nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) both at the RNA and the protein levels, a possible route to attenuation of B-cell lymphoma 2 (Bcl-2), and caused an opening of the mitochondrial membrane's permeability transition (MPT) pores, thus enhancing caspase activities. Conclusion: Overall, our results suggest possible pathways for CE mediated cytotoxicity in model cancer cells.