• 제목/요약/키워드: Scattering efficiency

검색결과 303건 처리시간 0.028초

A New Strategy to Fabricate a Colloidal Array Templated $TiO_2$ Photoelectrode for Dye-sensitized Solar Cells

  • 이현정
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.8.1-8.1
    • /
    • 2011
  • Nanocrystalline titanium dioxide ($TiO_2$) materials have been widely used as an electron collector in DSSC. This is required to have an extremely high porosity and surface area such that the dye can be sufficiently adsorbed and be electronically interconnected, resulting in the generation of a high photocurrent within cells. In particular, their geometrical structures and crystalline phase have been extensively investigated as important issues in improving its photovoltaic efficiency. In this study, we present a new strategy to fabricate a photoelectrode having a periodic structured $TiO_2$ film templated from 1D or 3D polystyrene (PS) microspheres array. Monodisperse PS spheres of various radiuses were used for colloidal array on FTO glasses and two types of photoelectrode structures with different $TiO_2$ materials were investigated respectively. One is the igloo-shaped electrode prepared by $TiO_2$ deposition by RF-sputtering onto 2D microsphere-templated substrates. At the interface between the film and substrate, there are voids formed by the decomposition of PS microspheres during the calcination step. These holes might be expected to play the predominant roles as scattering spherical voids to promote a light harvesting effect, a spacious structure for electrolytes with higher viscosity and effective paths for electron transfer. Additionally the nanocrystalline $TiO_2$ phase prepared by the RF-sputtering method was previously reported to improve the electron drift mobility within $TiO_2$ electrodes. This yields solar cells with a cell efficiency of 2.45% or more at AM 1.5 illumination, which is a very remarkable result, considering its $TiO_2$ electrode thickness (<2 ${\mu}m$). This study can be expanded to obtain higher cell efficiency by higher dye loading through the increase of surface area or multi-layered stacking. The other is the inverse opal photonic crystal electrode prepared by titania particles infusion within 3D colloidal arrays. To obtain the enlargement of ordered area and high quality of crystallinity, the synthesis of titania particles coated with a organic thin layer were applied instead of sol-gel process using the $TiO_2$ precursors. They were dispersed so well in most solvents without aggregates and infused successfully within colloidal array structures. This ordered mesoporous structure provides the large surface area leading to the enough adsorption of dye molecules and have an light harvesting effect due to the photonic band gap properties (back-and-forth reflection effects within structures). A major advantage of this colloidal array template method is that the pore size and its distribution within $TiO_2$ photoelectrodes are determined by those of latex beads, which can be controlled easily. These materials may have promising potentials for future applications of membrane, sensor and so on as well as solar cells.

  • PDF

Preparation of a Hydrophobized Chitosan Oligosaccharide for Application as an Efficient Gene Carrier

  • Son Sohee;Chae Su Young;Choi Changyong;Kim Myung-Yul;Ngugen Vu Giang;Jang Mi-Kyeong;Nah Jae-Woon;Kweon Jung Keoo
    • Macromolecular Research
    • /
    • 제12권6호
    • /
    • pp.573-580
    • /
    • 2004
  • To prepare chitosan-based polymeric amphiphiles that can form nanosized core-shell structures (nanopar­ticles) in aqueous milieu, chitosan oligosaccharides (COSs) were modified chemically with hydrophobic cholesterol groups. The physicochemical properties of the hydrophobized COSs (COSCs) were investigated by using dynamic light scattering and fluorescence spectroscopy. The feasibility of applying the COSCs to biomedical applications was investigated by introducing them into a gene delivery system. The COSCs formed nanosized self-aggregates in aqueous environments. Furthermore, the physicochemical properties of the COSC nanoparticles were closely related to the molecular weights of the COSs and the number of hydrophobic groups per COS chain. The critical aggregation concentration values decreased upon increasing the hydrophobicity of the COSCs. The COSCs effi­ciently condensed plasmid DNA into nanosized ion-complexes, in contrast to the effect of the unmodified COSs. An investigation of gene condensation, performed using a gel retardation assay, revealed that $COS6(M_n=6,040 Da)$ containing $5\%$ of cholesteryl chloroformate (COS6C5) formed a stable DNA complex at a COS6C5/DNA weight ratio of 2. In contrast, COS6, the unmodified COS, failed to form a stable COS/DNA complex even at an elevated weight ratio of 8. Furthermore, the COS6C5/DNA complex enhanced the in vitro transfection efficiency on Human embryonic kidney 293 cells by over 100 and 3 times those of COS6 and poly(L-lysine), respectively. Therefore, hydrophobized chitosan oligosaccharide can be considered as an efficient gene carrier for gene delivery systems.

리빙/조절 양이온중합에 의한 알파메틸스티렌 호모중합 및 이소부틸렌과의 블록공중합에 대한 반응속도론 연구 (Kinetic Studies on Homopolymerization of $\alpha$-Methylstyrene and Sequential Block Copolymerization of Isobutylene with $\alpha$-Methylstyrene by Living/Controlled Cationic Polymerization)

  • Wu, Yibo;Guo, Wenli;Li, Shuxin;Gong, Huiqing
    • 폴리머
    • /
    • 제32권4호
    • /
    • pp.366-371
    • /
    • 2008
  • The controlled/living cationic polymerization of $\alpha$-methylstyrene (${\alpha}MeSt$) and sequential block copolymerization of isobutylene (IB) with ${\alpha}MeSt$ were achieved using 2-chloro-2,4,4-trimethylpentane (TMPCl)/titanium tetrachloride ($TiCl_4$)/titanium isopropoxide ($Ti(OiPr)_4$)/2,6-ditert-butylpyridine (DtBP) initiating system in $CH_3Cl$/hexane(50/50 v/v) solvent mixture at $-80^{\circ}C$. The polymerization rate decreased with increasing $[Ti(OiPr)_4]/[TiCl_4]$ ratio in the homopolymerization of ${\alpha}MeSt$. The effects of $[Ti(OiPr)_4]/[TiCl_4]$ ratios and $PIB^+$ molecular weight on the polymerization rate and blocking efficiency were also investigated. Well-defined poly(isobutylene-b-$\alpha$-methylstyrene)s were demonstrated by $^1H$-NMR and triple detection SEC; refractive index (RI), multiangle laser light scattering (MALLS) and ultraviolet (UV) detectors. Blocking efficiencies for the poly(isobutylene-b-$\alpha$-methylstyrene)s of almost 100% were obtained when ${\alpha}MeSt$ was induced by PIB's of $M_n\;{\geq}\;41000$ at $[Ti(OiPr)_4]/[TiCl_4]=1$. Differential scanning calorimetry (DSC) of the block copolymers showed two glass transition temperatures, thereby demonstrating microphase separation.

Fabrication of Ordered One-Dimensional Silicon Structures and Radial p-n Junction Solar Cell

  • Kim, Jae-Hyun;Baek, Seong-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.86-86
    • /
    • 2012
  • The new approaches for silicon solar cell of new concept have been actively conducted. Especially, solar cells with wire array structured radial p-n junctions has attracted considerable attention due to the unique advantages of orthogonalizing the direction of light absorption and charge separation while allowing for improved light scattering and trapping. One-dimenstional semiconductor nano/micro structures should be fabricated for radial p-n junction solar cell. Most of silicon wire and/or pillar arrays have been fabricated by vapour-liquid-solid (VLS) growth because of its simple and cheap process. In the case of the VLS method has some weak points, that is, the incorporation of heavy metal catalysts into the growing silicon wire, the high temperature procedure. We have tried new approaches; one is electrochemical etching, the other is noble metal catalytic etching method to overcome those problems. In this talk, the silicon pillar formation will be characterized by investigating the parameters of the electrochemical etching process such as HF concentration ratio of electrolyte, current density, back contact material, temperature of the solution, and large pre-pattern size and pitch. In the noble metal catalytic etching processes, the effect of solution composition and thickness of metal catalyst on the etching rate and morphologies of silicon was investigated. Finally, radial p-n junction wire arrays were fabricated by spin on doping (phosphor), starting from chemical etched p-Si wire arrays. In/Ga eutectic metal was used for contact metal. The energy conversion efficiency of radial p-n junction solar cell is discussed.

  • PDF

Effect of carrier concentration of ITO films on Quantum Efficiency Window in Heterojunction Silicon Solar Cells

  • Kim, Hyunsung;Kim, Sangho;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.314-314
    • /
    • 2016
  • In this paper, the effects of carrier concentration on dielectric constant of ITO films were investigated by spectroscopic ellipsometry. From SE results, we find the pronounced shift of the ${\varepsilon}1$ peaks toward high energy with concentration; while contrarily, the ${\varepsilon}2$ values at low energy region increases with decreasing concentration. These shifts are attributed to the Burstein-Moss and free-carrier absorption effects within ITO films. With increases carrier concentration, the values of extinction coefficients show quite different behaviors in range of wavelength from 200 to 1200 nm. The reduction in k at ${\lambda}{\leq}500nm$, while increasing at ${\lambda}{\geq}500nm$ was observed. The QE of HJ solar cells behaviors can be roughly classified into two regions: short-wavelengths (${\leq}650nm$) and long-wavelengths region (${\geq}650nm$). With increasing carrier concentration as well as energy band gap, QE shows improvement at short-wavelength, while at long-wavelength QE shows opposite trend. Widening band gap energy due to Burstein-Moss shift is the key to improve QE in short-wavelength; simultaneously FCA effect due to optical scattering is attributed to the reduction in QE at long-wavelength. In spite of band gap extension, Jsc calculated from QE decreases from 34.7 mA/cm2 to 33.2 mA/cm2 with increasing carrier concentration. It demonstrated that FCA effect may more govern Jsc in the HJ solar cells.

  • PDF

실리콘 박막 태양전지에서 광 포획(light trapping) 개선에 관한 연구 (STUDY ON THE IMPROVEMENT OF LIGHT TRAPPING IN THE SILICON-BASED THIN-FILM SOLAR CELLS)

  • 전상원;이정철;안세진;윤재호;김석기;박병옥;송진수;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.192-195
    • /
    • 2005
  • The silicon thin film solar cells were fabricated by 13.56 MHz PECVD (Plasma-Enhanced Chemical-Vapor Deposition) and 60 MHz VHF PECVD (Very High-Frequency Plasma-Enhanced Chemical-Vapor Deposition). We focus on textured ZnO:Al films prepared by RF sputtering and post deposition wet chemical etching and studied the surface morphology and optical properties. These films were optimized the light scattering properties of the textured ZnO:Al after wet chemical etching. Finally, the textured ZnO:Al films were successfully applied as substrates for silicon thin films solar cells. The efficiency of tandem solar cells with $0.25 cm^2$ area was $11.8\%$ under $100mW/cm^2$ light intensity. The electrical properties of tandem solar cells were measured with solar simulator (AM 1.5, $100 mW/cm^2)$ and spectral response measurements.

  • PDF

물분해용 Cu2O 박막/ZnO 나노막대 산화물 p-n 이종접합 광전극의 광전기화학적 특성 (Photoelectrochemical Properties of a Cu2O Film/ZnO Nanorods Oxide p-n Heterojunction Photoelectrode for Solar-Driven Water Splitting)

  • 박정환;김효진;김도진
    • 한국재료학회지
    • /
    • 제28권4호
    • /
    • pp.214-220
    • /
    • 2018
  • We report on the fabrication and photoelectrochemical(PEC) properties of a $Cu_2O$ thin film/ZnO nanorod array oxide p-n heterojunction structure with ZnO nanorods embedded in $Cu_2O$ thin film as an efficient photoelectrode for solar-driven water splitting. A vertically oriented n-type ZnO nanorod array was first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method and then a p-type $Cu_2O$ thin film was directly electrodeposited onto the vertically oriented ZnO nanorods array to form an oxide semiconductor heterostructure. The crystalline phases and morphologies of the heterojunction materials were characterized using X-ray diffraction and scanning electron microscopy as well as Raman scattering. The PEC properties of the fabricated $Cu_2O/ZnO$ p-n heterojunction photoelectrode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the $Cu_2O/ZnO$ photoelectrode was found to exhibit a negligible dark current and high photocurrent density, e.g., $0.77mA/cm^2$ at 0.5 V vs $Hg/HgCl_2$ in a $1mM\;Na_2SO_4$ electrolyte, revealing an effective operation of the oxide heterostructure. In particular, a significant PEC performance was observed even at an applied bias of 0 V vs $Hg/HgCl_2$, which made the device self-powered. The observed PEC performance was attributed to some synergistic effect of the p-n bilayer heterostructure on the formation of a built-in potential, including the light absorption and separation processes of photoinduced charge carriers.

타타리메밀의 생력재배 기술 (Labor-saving practices in Tartary buckwheat(Fagopyrum tataricum) production)

  • 임용섭;박병재;박철호;박종인;김양식;박광호;강윤규;장광진
    • 한국자원식물학회지
    • /
    • 제22권4호
    • /
    • pp.359-363
    • /
    • 2009
  • 타타리메밀의 생력재배기술 확립을 목표로 파종, 제초, 수확방법의 개선을 도모하였다. 산파(손뿌림)는 종자량이 10a당 6 kg 정도 소요되었으며, 줄뿌림파종기는 4.5 kg, 복토직파기는 3.2 kg정도 소요되었다. 복도직파기를 이용한 기계파종의 경우 종실 수량이 주당 3.4 g으로 산파 시 종실수량 주당 2.4 g에 비하여 월등한 수량성을 보였다. 이것을 10a당 수량으로 환산하면 복토직파기 파종에서 113 kg으로 산파 80 kg에 비하여 우수하였다. 라쏘만 처리한 경우에 비하여 혼용과 조합 체계 처리에서 방제가가 90% 이상으로 높았으며 수량은 혼용(라쏘+그라목손)의 체계 처리 시 가장 높았다.

컴프턴 카메라 영상재구성을 위한 타원 누적법 (Ellipse-Stacking Methods for Image Reconstruction in Compton Cameras)

  • 이미노;이수진;김수미;이재성
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권4호
    • /
    • pp.520-529
    • /
    • 2007
  • An efficient method for implementing image reconstruction algorithms for Compton cameras is presented. Since Compton scattering formula establishes a cone surface from which the incident photon must have originated, it is crucial to implement a computationally efficient cone-surface integration method for image reconstruction. In this paper we assume that a cone is made up of a series of ellipses (or circles) stacked up one on top of the other. In order to reduce computational burden for tracing ellipses formed by the intersection of a cone and an image plane, we propose a new method using a series of imaginary planes perpendicular to the cone axis so that each plane contains a circle, not an ellipse. In this case the cone surface integral can be performed by simply accumulating the circles along the cone axis. To reduce the computational cost of tracing circles, only one of the circles in the cone is traced and the rest are determined by using simple trigonometric ratios. For our experiments, we used the three different schemes for tracing ellipses; (i) using the samples generated by the ellipse equation, (ii) using the fixed number of samples along a circle on the imaginary plane, and (iii) using the fixed sampling interval along a circle on the imaginary plane. We then compared performance of the above three methods by applying them to the two reconstruction algorithms - the simple back-projection method and the expectation-maximization algorithm. The experimental results demonstrate that our proposed methods (ii) and (iii) using imaginary planes significantly improve reconstruction accuracy as well as computational efficiency.

AC 모터 및 CdS 센서를 이용한 태양 추적 장치 제어 방법에 관한 연구 (Study on Solar Tracker Control Method using AC Motor and CdS Sensor)

  • 김보헌;김황래
    • 한국산학기술학회논문지
    • /
    • 제17권11호
    • /
    • pp.294-301
    • /
    • 2016
  • 최근 태양 에너지의 효율을 높이기 위해 사용되는 태양 추적 장치의 태양 추적 방법으로는 센서 방식, 프로그램 방식, 센서와 프로그램을 결합한 프로그램 혼합식으로 나눌 수 있다. 센서 방식 태양 추적 방법에서 AC 모터 및 CdS 센서를 이용한 태양 추적 장치는 저렴한 가격으로 제작이 가능하지만 모터 정지 시 발생하는 관성에 의한 오차 및 태양 빛의 산란에 의한 오차로 인해 위치 정밀도가 낮은 문제가 있다. 이러한 문제를 해결하기 위해 본 논문에서는 태양의 위치를 판단하는 CdS 센서 모듈 설계 방법과 추적 시 발생하는 오차를 미리 측정하여 그 값을 추적 제어 시 이용하는 제어 방법을 통해 위치 정밀도를 높이는 방법에 대해 제안하였다. 또한, 태양 추적 장치의 성능을 평가하기 위해 태양열 온수기를 구현하여 효율 향상 측면과 위치 정밀도 측면에서 실험을 진행하였다. 실험 결과, 위치 정밀도 실험에서는 ${\pm}2mm$의 위치 정밀도를 나타내 태양열 온수기의 허용 오차인 ${\pm}15mm$를 만족하였으며, 효율 향상 실험에서는 국내 온수기 인증 기준인 KSB8202 대비 32%의 효율 향상을 가져왔다.