Background: Diabetic nephropathy (DN) is one of the major complications of chronic hyperglycaemia affecting normal kidney functioning. The ayurvedic medicine curcumin (CUR) is pharmaceutically accepted for its vast biological effects. Objectives: The Curcuma-derived diferuloylmethane compound CUR, loaded on Poly (lactide-co-glycolic) acid (PLGA) nanoparticles was utilized to combat DN-induced renal apoptosis by selectively targeting and modulating Bcl2. Methods: Upon in silico molecular docking and screening study CUR was selected as the core phytocompound for nanoparticle formulation. PLGA-nano-encapsulated-curcumin (NCUR) were synthesized following standard solvent displacement method. The NCUR were characterized for shape, size and other physico-chemical properties by Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Fourier-Transform Infrared (FTIR) Spectroscopy studies. For in vivo validation of nephro-protective effects, Mus musculus were pre-treated with CUR at a dose of 50 mg/kg b.w. and NCUR at a dose of 25 mg/kg b.w. (dose 1), 12.5 mg/kg b.w (dose 2) followed by alloxan administration (100 mg/kg b.w) and serum glucose levels, histopathology and immunofluorescence study were conducted. Results: The in silico study revealed a strong affinity of CUR towards Bcl2 (dock score -10.94 Kcal/mol). The synthesized NCUR were of even shape, devoid of cracks and holes with mean size of ~80 nm having -7.53 mV zeta potential. Dose 1 efficiently improved serum glucose levels, tissue-specific expression of Bcl2 and reduced glomerular space and glomerular sclerosis in comparison to hyperglycaemic group. Conclusion: This study essentially validates the potential of NCUR to inhibit DN by reducing blood glucose level and mitigating glomerular apoptosis by selectively promoting Bcl2 protein expression in kidney tissue.
목 적 : 전뇌 방사선 치료 시 산란선으로 인하여 영향을 받는 갑상선의 피폭선량을 감소시키기 위해 차폐체를 사용하여 갑상선의 차폐 효과를 평가하고자 한다. 대상 및 방법 : 갑상선의 피폭선량을 측정하기 위해 선형가속기(Clinac iX. VARIAN, USA)를 이용하여 6 MV X선, 300 cGy를 인체모형팬텀에 대향 2문 조사하였다. 갑상선의 입사표면선량을 측정하기 위해 인체모형팬텀의 10번째 슬라이스 표면에 유리선량계 다섯 개를 1.5 cm 간격으로 위치시킨 후 차폐체 미사용, bismuth 차폐체 사용, 0.5 mmPb 차폐체 사용, 자체 제작한 1.0 mmPb 차폐체를 사용하여 각각 5회씩 측정하여 평균값을 산출하였다. 또한, 같은 위치에서 갑상선 심부선량을 측정하기 위해서 인체모형팬텀의 10번째 슬라이스 2.5 cm 깊이에서 유리선량계 다섯 개를 1.5 cm 간격으로 위치시킨 후 차폐체 미사용, bismuth 차폐체 사용, 0.5 mmPb 차폐체 사용, 자체 제작한 1.0 mmPb 차폐체를 사용하여 각각 5회씩 측정하여 평균값을 산출하였다. 결 과 : 갑상선의 입사표면선량은 차폐체 미사용 시 44.89 mGy로 측정되었고, bismuth 차폐체는 36.03 mGy, 0.5 mmPb 차폐체는 31.03 mGy, 자체 제작한 1.0 mmPb 차폐체는 23.21 mGy로 측정되었다. 또한, 갑상선의 심부선량은 차폐체 미사용 시 36.10 mGy로 측정되었고, bismuth 차폐체는 34.52 mGy, 0.5 mmPb 차폐체는 32.28 mGy, 자체 제작한 1.0 mmPb 차폐체는 25.50 mGy로 측정되었다. 결 론 : 전뇌 방사선 치료 시 방사선 조사면 밖의 영역에서 발생하는 이차 산란 및 누출 선량에 의해 영향을 받는 갑상선에 대하여 차폐체를 사용했을 때 갑상선 심부는 약 11~30%, 갑상선 표면은 약 20~48% 정도의 피폭선량 감소 효과가 나타났다. 따라서 전뇌 방사선 치료 시 갑상선 차폐체를 사용함으로써 갑상선을 효과적으로 보호하며 치료를 시행할 수 있을 것으로 사료된다.
목 적 : 최근 시행되고 있는 가임기 여성의 유방암 토모치료 시 치료영역 외에서 발생되는 산란 및 누설에 의한 난소산란선량을 측정하여 평가하고자 한다. 대상 및 방법 : 인체모형팬텀(Aldorson Rando phantom, USA)을 대상으로 전산화단층영상 2.5 mm 획득 후, Tomotherapy Planning station(Tomotherapy, Inc, USA)을 이용하여 좌측 유방암 환자의 토모테라피 치료계획(Tomotherapy Helical & Tomotherapy Direct)을 수립하였다. 난소의 산량 선량 측정을 위한 측정 지점은 치료계획면적의 30 cm 아래 떨어진 골반의 좌우 위치로 직경 1.5 mm, 길이가 12mm인 저에너지용 보상필터가 들어있는 종류의 유리선량계 (GD-352M, ASAHI TECHNO GLASS CO, Japan)를 이용하여 각 5회씩 측정하여 평균하였으며, 선형지수-선량반응모델을 이용한 장기등가선량(organ equivalent dose: OED)으로 평가하였다. 결 과 : 토모 Helical 및 토모 Direct의 두 가지 방식으로 측정된 난소의 산란선량은 좌측 난소부위가 각각 평균 $64.94{\pm}0.84mGy$, $37.64{\pm}1.20mGy$이고, 우측 난소부위가 평균 $64.38{\pm}1.85mGy$, $32.96{\pm}1.11mGy$로 나타났다. 이는 토모치료 시 비교적 모니터 단위(MU)가 크고 조사 시간이 긴 토모Helical 방식이 토모Direct에 비하여 측정된 산란선량의 양이 보다 약 1.8배 높은 경향을 보였다. 결 론 : 가임기 여성의 유방암 토모테라피 시 발생하는 좌우측 난소의 산량선량은 ICRP 권고 선량이하로, 불임 및 2차 암 발생에 대한 우려 수준은 현저히 낮지만 향후 유방암 발생 연령층이 낮아지고, 토모테라피와 같이 고정밀 영상유도장치를 이용한 방사선치료가 발달할수록, 가임기 여성 환자의 난소산란선량에 대한 임상적 추적조사가 더욱 필요할 것으로 사료된다.
목 적 : 현재 전뇌 방사선 치료 시 두부의 고정을 위하여 Optimold가 사용되고 있다. 하지만 Optimold로 인한 산란선에 의해 피부선량이 약 22% 증가하게 된다. 백내장을 일으키는 최소선량이 2 Gy 이므로 특히 수정체에서는 영향이 크다고 볼 수 있다. 이에 전뇌 방사선 치료 시 Optimold 안구 부분의 유무에 따른 수정체에 흡수되는 선량을 비교평가 하고자 한다. 대상 및 방법 : 안구 부분의 Optimold의 유무에 따른 수정체에 흡수되는 선량을 비교평가 하고자 인체모형팬텀(Anderson Rando Phantom, USA)의 수정체 부분에 5mm bolus를 올려 Optimold mask를 만들었다. 모의치료 시 수정체의 선량측정을 위해 bolus 밑에 GAFCHROMIC EBT3 film을 위치시켜 모의치료를 진행하고 전산화치료계획시스템(Pinnacle, PHILIPS, USA)을 통해 치료계획을 수립한 후 치료도 동일하게 진행하여 3회 반복측정 하였다. 안구 부분의 Optimold mask를 제거하고 위와 동일한 방법으로 측정하였다. 디지털 평판 스캐너(Expression 10000XL, EPSON, USA)를 이용하여 film을 스캔한 후 선량을 측정하여 안구 부분의 Optimold mask의 유무에 따른 선량을 비교평가 하였다. 결 과 : 안구 부분의 Optimold mask가 있을 때 모의치료 시 $10.2cGy{\pm}1.5$, 치료 시 $24.8cGy{\pm}2.7$, 안구 부분의 Optimold mask를 제거하였을 때 모의치료 시 $12.9cGy{\pm}2.2$, 치료 시 $17.6cGy{\pm}1.5$로 측정 되었다. 결 론 : 안구 부분의 Optimold mask를 제거하였을 경우 제거하지 않았을 경우에 비하여 모의치료 시 약 3 cGy의 선량이 증가하였고 치료 시 약 7 cGy의 선량이 감소하였다. 전 치료과정 중 수정체의 흡수선량이 약 27%감소되어 방사선감수성이 높은 수정체에 흡수되는 선량이 줄어 백내장을 일으킬 확률과 부작용을 감소시킬 수 있을 것으로 사료된다.
본 연구에서는 손, 머리, 복부 등에 대한 X선 촬영 시행 시 조사야 크기를 최적화할 경우와 최대화할 경우 검사목적부위로부터 30cm 거리에서의 X선 산란선량이 각각 어느 정도인지를 알아보았다. 그 결과 손, 머리, 복부 등에 대한 X선 산란선량은 첫째, 소인촬영의 경우 조사야 크기를 최적화하였을 때 각각 $0.08{\mu}Sv$, $4.39{\mu}Sv$, $5.56{\mu}Sv$로 나타났고, 조사야 크기를 최대화하였을 때 각각 $0.58{\mu}Sv$, $33.47{\mu}Sv$, $35.93{\mu}Sv$로 나타났으며, 둘째, 성인촬영의 경우 조사야 크기를 최적화하였을 때 각각 $0.40{\mu}Sv$, $14.51{\mu}Sv$, $18.86{\mu}Sv$로 나타났고, 조사야 크기를 최대화하였을 때 각각 $2.78{\mu}Sv$, $107.40{\mu}Sv$, $117.52{\mu}Sv$로 나타났다(P<0.001). 결론적으로, X선 촬영 시 조사야 크기를 필요한 만큼만으로 최대한 줄여주어 최적화시켰을 때에 최대화 시켰을 때보다 피사체 주변의 X선 산란선 발생량은 약 6~7배 정도 감소하였다.
Purpose: This study aimed to dosimetrically compare the technique of three-dimensional conformal radiotherapy (3D CRT), which is a traditional prophylactic cranial irradiation method, and the intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques used in the last few decades with the dynamic conformal arc therapy (DCAT) technique. Methods: The 3D CRT, VMAT, IMRT, and DCAT plans were prepared with 25 Gy in 10 fractions in a Monaco planning system. The target volume and the critical organ doses were compared. A comparison of the body V2, V5, and V10 doses, monitor unit (MU), and beam on-time values was also performed. Results: In planned target volume of the brain (PTVBrain), the highest D99 dose value (P<0.001) and the most homogeneous (P=0.049) dose distribution according to the heterogeneity index were obtained using the VMAT technique. In contrast, the lowest values were obtained using the 3D CRT technique in the body V2, V5, and V10 doses. The MU values were the lowest when DCAT (P=0.001) was used. These values were 0.34% (P=0.256) lower with the 3D CRT technique, 66% (P=0.001) lower with IMRT, and 72% (P=0.001) lower with VMAT. The beam on-time values were the lowest with the 3D CRT planning (P<0.001), 3.8% (P=0.008) lower than DCAT, 65% (P=0.001) lower than VMAT planning, and 76% (P=0.001) lower than IMRT planning. Conclusions: Without sacrificing the homogeneous dose distribution and the critical organ doses in IMRTs, three to four times less treatment time, less low-dose volume, less leakage radiation, and less radiation scattering could be achieved when the DCAT technique is used similar to conventional methods. In short, DCAT, which is applicable in small target volumes, can also be successfully planned in large target volumes, such as the whole-brain.
When high energy photon beam is incident upon an air cavity interface the effect of ionization build-up observed . This phenomenon is resulting from the surface layers of the lesions are significant deficiency of electrons reaching the layers because of the replacement, of solid scattering material by the air cavity, that is lack of electronic equilibrium. Measurement have been made in an acrylic phantom with a parallel plate chamber and high energy photon beams, CO-60, 4MV, 6MV and 10MV X-rays have been investigated. The result of our study show that a significant effect was measured and was determined to be very dependent on field size, air cavity dimension and photon energy. The reductions were much larger for 10MV beam, underdosage at the interface was 12, 12.2, 16.9 and $20.6\%$ for the CO-60, 4MV, 6MV and 10MV, respectively. It was found that this non-equilibrium effect at the interface is more severe for the higher energy beams than that of lower energy beams and the larger cavity dimensions the larger beam reductions occur. This problem is of clinical concern when lesions such as carcinoma beyond air cavities are irradiated, such as larynx, glottic and the patients with maxillectomy and ethmoidectomy and so forth.
In this study, the authors attempted to produce a medical radiation shielding fiber that can be produced at a nanosize scale and that is, unlike lead, harmless to the human body. The performance of the proposed medical radiation shielding fiber was then evaluated. First, diamagnetic bismuth oxide, an element which, among elements that have a high atomic number and density, is harmless to the human body, was selected as the shielding material. Next, 10-100 nm sized nanoparticles in powder form were prepared by ball milling the bismuth oxide ($Bi_2O_3$), the average particle size of which is $1-500{\mu}m$, for approximately 10 minutes. The manufactured bismuth oxide was formed into a colloidal solution, and the radiation shielding fabric was fabricated by curing after coating the solution on one side or both sides of the fabric. The thicknesses of the shielding sheets prepared with bismuth oxide were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 1.0 mm. An experimental method was used to measure the absorbed dose and irradiation dose by using the lead equivalent test method of X-ray protection goods presented by Korean Industrial Standards; the resultant shielding rate was then calculated. From the results of this study, the X-ray shielding effect of the shielding sheet with 0.1 mm thickness was about 55.37% against 50 keV X-ray, and the X-ray shielding effect in the case of 1.0 mm thickness showed shielding characteristics of about 99.36% against 50 keV X-ray. In conclusion, it is considered that nanosized-bismuth radiation shielding fiber developed in this research will contribute to reducing the effects of primary X-ray and secondary X-ray such as when using a scattering beam at a low level exposure.
C-arm fluoroscopy is a useful tool for interventional pain management. However, with the increasing use of C-arm fluoroscopy, the risk of accumulated radiation exposure is a significant concern for pain physicians. Therefore, efforts are needed to reduce radiation exposure. There are three types of radiation exposure sources: (1) the primary X-ray beam, (2) scattered radiation, and (3) leakage from the X-ray tube. The major radiation exposure risk for most medical staff members is scattered radiation, the amount of which is affected by many factors. Pain physicians can reduce their radiation exposure by use of several effective methods, which utilize the following main principles: reducing the exposure time, increasing the distance from the radiation source, and radiation shielding. Some methods reduce not only the pain physician's but also the patient's radiation exposure. Taking images with collimation and minimal use of magnification are ways to reduce the intensity of the primary X-ray beam and the amount of scattered radiation. It is also important to carefully select the C-arm fluoroscopy mode, such as pulsed mode or low-dose mode, for ensuring the physician's and patient's radiation safety. Pain physicians should practice these principles and also be aware of the annual permissible radiation dose as well as checking their radiation exposure. This article aimed to review the literature on radiation safety in relation to C-arm fluoroscopy and provide recommendations to pain physicians during C-arm fluoroscopy-guided interventional pain management.
CZT detectors, which are compound semiconductors that have been widely used recently for gamma-ray detection purposes, are difficult to detect neutrons because direct interaction with them does not occur unlike gamma-rays. In this paper, a method of detecting and determining energy levels (fast neutrons and thermal neutrons) of neutrons, in addition of identifying energy and nuclide of gamma-rays, and evaluating gamma dose rates using a CZT semiconductor detector is described. Neutrons may be detected by a secondary photoelectric effect or compton scattering process with a characteristic gamma-ray of 558.6 keV generated by a capture reaction (113Cd + 1n → 114Cd + 𝛾) with cadmium (Cd) in the CZT detector. However, in the case of fast neutrons, the probability of capture reaction with cadmium (Cd) is very low, so it must be moderated to thermal neutrons using a moderator and the material and thickness of moderator should be determined in consideration of the portability and detection efficiency of the equipment. Conversely, in the case of thermal neutrons, the detection efficiency decreases due to shielding effect of moderator itself, so additional CZT detector that do not contain moderator must be configured. The CZT detector that does not contain moderator can be used to evaluate energy, nuclide, and gamma dose-rate for gamma-rays. The technology proposed in this paper provides a method for detecting both neutrons and gamma-rays using a CZT detector.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.