• Title/Summary/Keyword: Scattering Analysis

Search Result 1,062, Processing Time 0.026 seconds

Compensation of Light Scattering Method for Real-Time Monitoring of Particulate Matters in Subway Stations (지하역사 내 미세먼지 실시간 모니터링을 위한 광산란법 보정)

  • Kim, Seo-Jin;Kang, Ho-Seong;Son, Youn-Suk;Yoon, Sang-Lyeor;Kim, Jo-Chun;Kim, Gyu-Sik;Kim, In-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.533-542
    • /
    • 2010
  • The $PM_{10}$ concentrations in the underground should be monitored for the health of commuters on the underground subway system. Seoul Metro and Seoul Metropolitan Rapid Transit Corporation are measuring several air pollutants regularly. As for the measurement of $PM_{10}$ concentrations, instruments based on $\beta$-ray absorption method and gravimetric methods are being used. But the instruments using gravimetric method give us 20-hour-average data and the $\beta$-ray instruments can measure the $PM_{10}$ concentration every one hour. In order to keep the $PM_{10}$ concentrations under a healthy condition, the air quality of the underground platform and tunnels should be monitored and controlled continuously. The $PM_{10}$ instruments using light scattering method can measure the $PM_{10}$ concentrations every less than one minute. However, the reliability of the instruments using light scattering method is still not proved. The purpose of this work is to study the reliability of the instruments using light scattering method to measure the $PM_{10}$ concentrations continuously in the underground platforms. One instrument using $\beta$-ray absorption method and two different instruments using light scattering method (LSM1, LSM2) were placed at the platform of the Jegi station of Seoul metro line Number 1 for 10 days. The correlation between the $\beta$-ray instrument and the LSM2 ($r^2$=0.732) was higher than that between the $\beta$-ray instrument and the LSM1 ($r^2$=0.393). Thus the LSM2 was chosen for further analysis. Three different regression analysis methods were tested: Linear regression analysis, Nonlinear regression analysis and Orthogonal regression analysis. When the instruments using light scattering method were used, the data measured these instruments have to be converted to actual $PM_{10}$ concentrations using some factors. With these analyses, the factors could be calculated successfully as linear and nonlinear forms with respect to the data. And the orthogonal regression analysis was performed better than the ordinary least squares method by 28.45% reduction of RMSE. These findings propose that the instruments using light scattering method light scattering method can be used to measure and control the $PM_{10}$ concentrations of the underground subway stations.

Inverse Scattering of Two-Dimensional Objects Using Linear Sampling Method and Adjoint Sensitivity Analysis

  • Eskandari, Ahmadreza;Eskandari, Mohammad Reza
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.308-313
    • /
    • 2015
  • This paper describes a technique for complete identification of a two-dimensional scattering object and multiple objects immersed in air using microwaves where the scatterers are assumed to be a homogenous dielectric medium. The employed technique consists of initially retrieving the shape and position of the scattering object using a linear sampling method and then determining the electric permittivity and conductivity of the scatterer using adjoint sensitivity analysis. Incident waves are assumed to be TM (Transverse Magnetic) plane waves. This inversion algorithm results in high computational speed and efficiency, and it can be generalized for any scatterer structure. Also, this method is robust with respect to noise. The numerical results clearly show that this hybrid approach provides accurate reconstructions of various objects.

A boundary-volume integral equation method for the analysis of wave scattering

  • Touhei, Terumi
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.183-204
    • /
    • 2012
  • A method for the analysis of wave scattering in 3-D elastic full space is developed by means of the coupled boundary-volume integral equation, which takes into account the effects of both the boundary of inclusions and the uctuation of the wave field. The wavenumber domain formulation is used to construct the Krylov subspace by means of FFT. In order to achieve the wavenumber domain formulation, the boundary-volume integral equation is transformed into the volume integral equation. The formulation is also focused on this transform and its numerical implementation. Several numerical results clarify the accuracy and effectiveness of the present method for scattering analysis.

Phase Shift Analysis of 6Li Elastic Scattering on 12C and 28Si at Elab = 318 MeV

  • Kim, Yong Joo
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1331-1337
    • /
    • 2018
  • We present a three-parameter phase shift model whose form is the same as that of Coulombmodified Glauber model obtained from Gaussian nuclear densities. This model is applied to the $^6Li+^{12}C$ and the $^6Li+^{28}Si$ elastic scatterings at $E_{lab}=318MeV$. The calculated differential cross sections provide quite a satisfactory account of the experimental data. The diffractive oscillatory structures observed at forward angles can be explained as being due to the strong interference between the near-side and the far-side scattering amplitudes. The optical potentials for two systems are predicted by using the method of inversion. The calculated inversion potentials are found to be in fairly good agreements with the results determined from the optical model analysis in the surface regions around the strong absorption radius. We also investigate the effects of parameters in the three-parameter phase shift model on the elastic scattering cross sections.

Nonuniqueness in Inverse Scattering Problems (역산란 문제에서의 비유연성)

  • 김세윤;라정웅
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.9
    • /
    • pp.1317-1321
    • /
    • 1989
  • The nonuniqueness of solutions to inverse scattering problems for the reconstruction of cross sectional permitivity distributions on dielectric cylinder is illustrated in view of numerical analysis based on the spectral inverse scattering scheme with the moment-method procedures. It is also shown that some additional treatmenents such as multiple measurements, various incidences, etc. are not effective to assure the uniqueness.

  • PDF

A Study of Penetration Depth into Ceiling Materials containing Asbestos according to Dilution Rate of Scattering Prevention Agent (석면 함유 천장재의 안정화제 희석에 따른 침투깊이 연구)

  • Shin, Hyungyoo;Choi, Youngkue;Jeon, Boram;Ha, Jooyeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.82-88
    • /
    • 2015
  • Objectives: This study is designed to analyze the penetration performance into ceiling materials containing asbestos of scattering prevention agents and investigate the change in penetration depth and viscosity according to the dilution rate of anti-scattering agents diluted with distilled water. Methods: Five different types of scattering prevention agents were spread on plate-type asbestos ceiling materials. The penetration depth of each coated ceiling material was measured by energy dispersive spectroscopy (EDS) analysis, based on X-ray fluorescence (XRF) results of the non-coated ceiling materials. Test equipment installed the ceiling materials and 60 minutes were collected at a flow rate of $10{\ell}/min$ at a filter of 25 mm. Results: An EDS analysis of the cross-section of ceiling materials constructed with a scattering prevention agent revealed that potassium is detected in the process of penetrating hardener solidification and this element could be an indicator for infiltration. When anti-scattering agents with different viscosities were constructed and the penetration depth was analyzed by potassium detection assessment using EDS, the depth results with viscosities of 5.0, 2.5, and 1.9 cP were 98.5, 103, and $147{\mu}m$, respectively. Penetration performance improved with decrease in viscosity. Conclusions: For asbestos ceiling materials, it is concluded that a higher dilution rate of the scattering prevention agent leads to lower viscosity, and hence a deeper penetration depth from $156{\mu}m$ to 3 mm. The asbestos anti-scattering properties according to the penetration depth will be confirmed through further study.

A Study on the Ground Input Motion for Seismic Analysis of Structures (구조물의 내진 해석을 위한 지반 입력운동의 산정에 관한 연구)

  • Lee, In-Moo;Song, Tae-Won;Huh, Young
    • Geotechnical Engineering
    • /
    • v.5 no.3
    • /
    • pp.5-18
    • /
    • 1989
  • The ground input motions used for seismic analysis of structures are studied in this paper, The one-dimensional wave propagation theory, the simple transfer function by Elsabee and Morray, and the finite element method that can account for the effect of scattering field, respectively, are used to get the ground input motions, and the results by these methods are compared among others. The responses of structures are also computed by both finite element analysis and elastic half space analysis, using the ground input motions obtained by the different methods mentioned above, and the computed results are analyzed. In addition, the parameteric study Is performed to analyze the effect of the increase of soil stiffness on the response of structures, and on that of the ground input motions. The responses of structures obtained are compared with the results obtained using the Building Code on seismic analysis for structures in Korea. The results of this study show that the ground input motions obtained without considering the effect of scattering field was 2 times larger than those with scattering effect, concluding that the effect of scattering field may not be ignored when obtains the ground input motion.

  • PDF

Spectrometer for the Study of Angle-and Energy-Resolved Reactive Ion Scattering at Surfaces

  • S-J. Han;C.-W. Lee;C.-H. Hwang;K.-H. Lee;M. C. Yang;H. Kang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.883-888
    • /
    • 2001
  • We describe an ion-surface scattering apparatus newly developed to investigate the reactive scattering process of low-energy alkali-metal ions at surfaces. The apparatus consists of an alkali-metal ion gun that is rotatable by 360°, a quadrupole mass spectrometer (QMS) with an ion energy analyzer, a sample manipulator with a heating-and-cooling stage, and an ultrahigh vacuum (UHV) chamber that houses these components. Preliminary experimental results obtained from the apparatus are presented on angular and energy distributions of the ions scattered from clean Pt(111) and water-adsorbed Pt surfaces.

Analysis of Scattering Characteristics of a Rectangular Waveguide with Conducting Half Cylinders using the Mode Matching Method (모드매칭법을 이용한 금속의 Half Cylinder가 있는 구형 도파관의 산란 특성 해석)

  • 김원기;천동완;김상태;신철재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8A
    • /
    • pp.962-971
    • /
    • 2004
  • In this paper, we present the numerical analysis method for analyzing scattering characteristics of a rectangular waveguide with the conducting half cylinder using the mode matching method and compute scattering characteristics of a waveguide according to the rotation and changing radius of the half cylinder. Also, in conjunction with the generalized scattering method, the proposed method can be easily applied to a rectangular waveguide with cascade structure of conducting half cylinders. From the simulated result of a two pole filter, resonance frequency could be controlled by the rotation of half cylinders. The simulated result shows good agreement with the HFSS's result. The proposed structure and analysis method are easily applied to the design of waveguide components with conducting half cylinders.