• Title/Summary/Keyword: Scattered X-ray

Search Result 149, Processing Time 0.024 seconds

A Case of Lymphangioleiomyomatosis with Pregnancy (임신으로 악화된 폐의 임파관평활근종증 l예)

  • Kim, Seong-Ook;Kim, Min-Gu;Won, Yong-Hwan;Kim, Ho-Cheol;Hwang, Young-Sil;Kim, Jong-Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.3
    • /
    • pp.375-380
    • /
    • 1995
  • The lymphangioleiomyomatosis(LAM) is a rare disorder, which afflicts mainly young woman of childbearing age, characterized by proliferation of immature smooth muscle cell in the lymphatics. We experienced a case of LAM in 26-years-old pregnant woman, confirmed pathologically by inguinal lymph node biopsy. She has suffered from exertonal dyspnea and dry coughing. The symptoms and chest X-ray were aggravated with pregnancy, but improved after delivery with two times of pregnancy. The chest X-ray showed diffuse reticulonodular infiltration and chest HRCT showed diffuse scattered tiny thin-walled cyst of lung parenchyma. We noted chylous ascites of which triglyceride level is 396 mg/dl. After delivery, the symptoms were getting better. We treated with medroxyprogesterone and planned close observation and follow-up.

  • PDF

Density Profile Evaluation of Needle-punched Carbon/Carbon Composites Nozzle Throat by the Computed Tomography (전산화 단층촬영에 의한 니들펀칭 탄소/탄소 복합재료 노즐 목삽입재의 밀도 분포 평가)

  • Kim Dong-Ryun;Yun Nam-Gyun;Lee Jin-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.44-53
    • /
    • 2006
  • In this study, the non-destructive computed tomography was adopted to observe the density profile of the needle-punched Carbon/Carbon(C/C) composites nozzle throat. The density profile of C/C was evaluated within ${\pm}0.01g/cm^3$ with 98.74% confidence when the correction of the image and high signal-to-noise ratio were achieved by the optimization of the beam hardening, the electrical noise and the scattered X-ray. The density variation of C/C with the computed tomography was in good agreement with the results obtained by the water immersion method and the observation with scanning electron microscope.

Ultrastructural study of mouse ovary under X-ray irradiation (방사선 조사선량에 따른 생쥐 난소의 미세구조적 연구)

  • Yoon, Chul-Ho
    • Journal of radiological science and technology
    • /
    • v.28 no.3
    • /
    • pp.249-254
    • /
    • 2005
  • This study investigated the structural changes of folliculus ovarii according to the dose of the X-rays when mice were exposed to X-rays from 6MeV LINAC. The minute structural changes of folliculus ovarii were observed through an electron microscope with high magnification. Nuclei and protoplasm of granular cells in growing folliculus ovarii abruptly underwent minute structural changes according to the increase of dose of X-rays. Cell residue, by-product of cell decease, neutrophil and macrophage around follicular antrum were observed. The minute structural changes in granular cells showed typical characteristics of apoptosis: the increase of electronic density due to nuclear condensation, fragmentation of nuclei, and atrophy of protoplasm. Necrosis of cells was identified, but it was not so remarkable. Macrophage scattered with apoptotic bodies.

  • PDF

Density Profile Measurement of Needle-punched Carbon/Carbon Nozzle Throat by the Analysis of Computed Tomography Image (전산화 단층촬영 영상 분석에 의한 탄소/탄소 목삽입재의 밀도 분포 측정)

  • Kim Dong-Ryun;Yun Nam-Gyun;Lee Jin-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.469-474
    • /
    • 2005
  • Tn this study, the noll-destructive computed X-ray tomography was adopted to observe the density distribution of the needle-punched C-C composites nozzle throat. The density distribution of the C-C was evaluated within ${\pm}0.01g/cm^3$ with 98.74% confidence when the correction of the image and high signal-to-noise ratio were achieved by the optimization of the beam hardening, the electrical noise and the scattered X-ray. The density variation of the C/C with the computed tomography was in good agreement with the results obtained by the water immersion method and the observation with scanning electron microscope.

  • PDF

A Study for Effects of Image Quality due to Scatter Ray produced by Increasing of Tube Voltage (관전압 증가에 기인한 산란선 발생의 화질 영향 연구)

  • Park, Ji-Koon;Jun, Je-Hoon;Yang, Sung-Woo;Kim, Kyo-Tae;Choi, Il-Hong;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.663-669
    • /
    • 2017
  • In diagnostic medical imaging, it is essential to reduce the scattered radiation for the high medical image quality and low patient dose. Therefore, in this study, the influence of the scattered radiation on medical images was analyzed as the tube voltage increases. For this purpose, ANSI chest phantom was used to measure the scattering ratio, and the scattering effect on the image quality was investigated by RMS evaluation, RSD and NPS analysis. It was found that the scattering ratio with increasing x-ray tube voltage gradually increased to 48.8% at 73 kV tube voltage and to 80.1% at 93 kV tube voltage. As a result of RMS analysis for evaluating the image quality, RMS value according to increase of tube voltage was increased, resulting in low image quality. Also, the NPS value at 2.5 lp/mm spatial frequency was increased by 20% when the tube voltage was increased by 93 kV compared to the tube voltage of 73 kV. From this study, it can be seen that the scattering radiation have a significant effect on the image quality according to the increase of x-ray tube voltage. The results of this study can be used as basic data for the improvement of medical imaging quality.

Quantitative Analysis of Digital Radiography Pixel Values to absorbed Energy of Detector based on the X-Ray Energy Spectrum Model (X선 스펙트럼 모델을 이용한 DR 화소값과 디텍터 흡수에너지의 관계에 대한 정량적 분석)

  • Kim Do-Il;Kim Sung-Hyun;Ho Dong-Su;Choe Bo-young;Suh Tae-Suk;Lee Jae-Mun;Lee Hyoung-Koo
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.202-209
    • /
    • 2004
  • Flat panel based digital radiography (DR) systems have recently become useful and important in the field of diagnostic radiology. For DRs with amorphous silicon photosensors, CsI(TI) is normally used as the scintillator, which produces visible light corresponding to the absorbed radiation energy. The visible light photons are converted into electric signal in the amorphous silicon photodiodes which constitute a two dimensional array. In order to produce good quality images, detailed behaviors of DR detectors to radiation must be studied. The relationship between air exposure and the DR outputs has been investigated in many studies. But this relationship was investigated under the condition of the fixed tube voltage. In this study, we investigated the relationship between the DR outputs and X-ray in terms of the absorbed energy in the detector rather than the air exposure using SPEC-l8, an X-ray energy spectrum model. Measured exposure was compared with calculated exposure for obtaining the inherent filtration that is a important input variable of SPEC-l8. The absorbed energy in the detector was calculated using algorithm of calculating the absorbed energy in the material and pixel values of real images under various conditions was obtained. The characteristic curve was obtained using the relationship of two parameter and the results were verified using phantoms made of water and aluminum. The pixel values of the phantom image were estimated and compared with the characteristic curve under various conditions. It was found that the relationship between the DR outputs and the absorbed energy in the detector was almost linear. In a experiment using the phantoms, the estimated pixel values agreed with the characteristic curve, although the effect of scattered photons introduced some errors. However, effect of a scattered X-ray must be studied because it was not included in the calculation algorithm. The result of this study can provide useful information about a pre-processing of digital radiography.

  • PDF

Characteristics and Influence of Scattering Radiation in Cultural Heritage Radiography (문화재 방사선 조사에서 발생하는 산란 방사선의 특성과 영향)

  • Song, Jung Il;Park, Young Hwan;Yu, Ji Hye
    • Journal of Conservation Science
    • /
    • v.34 no.6
    • /
    • pp.539-548
    • /
    • 2018
  • This study was conducted to evaluate the effects of scattering radiation, which was not considered in the cultural Heritage radiography, by evaluating the relationship between the tube voltage (unit: kVp), film-floor-distance(FFD), and lead screen layout. The density (unit: D) of the test specimens and the scattered radiation increased with the tube voltage. The density of the test specimens showed an average deviation of 1.4 D; it was 0.17 D at 60 kVp, 1.54 D at 160 kVp, and 2.97 D at 220 kVp. The mean density of the scattered radiation was 0.10 D at 60 kVp, 0.40 D at 160 kVp, and 0.46 D at 220 kVp. The density tended to increase when the tube voltage ranged between 60 kVp and 160 kVp, as the FFD distance increased. However, a change in the permeation density was not observed for high voltages(160 kVp-220 kVp). Scattered radiation was observed when FFD was 50 mm, 100 mm, and 200 mm and no lead screen was used and the bottom surface was replaced with the lead screen. No scattered radiation was observed when FFD was 0 mm. The identification rate ranged from 2.08% to 2.67%, according to the FFD, for a 160 kVp tube voltage, and from 2.67% to 3.33% for a 220 kVp tube voltage.

A Study on the Variation of Transmission Factors, Output Factors and Percent Depth Doses by Wedge Filters for 4~10 MV X-Ray Beams (4~10 MV X-선의 쐐기 (wedge) 필터의 투과율과 출력계수, 선축상 선량분포의 변화에 관한 연구)

  • 강위생
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.3-17
    • /
    • 1997
  • Because a wedged beam consists of attenuated primary photons and scattered radiations from wedge, the spectrum of the wedged beam does not coincide with that of an open beam with same geometry. The aims of current report are to get exact information about whether effects of 15-60$^{\circ}$ wedge for 4 -10 MV photon beams should be considered for dose calculation or not, and to suggest a reference condition for measurement of wedge transmission factor. Percent depth dose of both open and wedged fields with angles of 15, 30, 45, 60$^{\circ}$ for beams of 4 MV(Clinac 4/100, Varian), two 6 MV(Clinac 6/100 and Clinac 2100C, Varian), 10 MV(Clinac 2100C, Varian) X-rays were measured to 30cm deep in water using ionization chambers. Hardening factors of photon beams were calculated with measured PDDs. Both field size factors and transmission factors of wedge filters were measured at d$_{max}$ in water. Beam hardening factors of wedged fields of 4 and 6 MV X-ray were larger than 1 for all wedge angles, field sizes and depths deeper than d$_{max}$ Beam hardening factors for wedge angles 15, 30, 45, 60$^{\circ}$ for 10$\times$10cm were respectively 1.010, 1.014, 1.023 and 1.034 for 4MV X-ray, 1.005, 1.008, 1.019, and 1.024 for 6MV X-ray of Clinac 6/100, 1.011, 1.021, 1.032, 1.036 for 6MV X-ray of Clinac 2100C, and 1.008, 1.012, 1.012 and 1.012 for 10MV X-ray. Beam hardening factors of 10MV X-ray were 1 within 1.2% difference for all wedge angles, depths and field sizes. It was made clear that for 6MV X-rays, the beam hardening factor depends on treatment machine. The relationship of the factor and depth was linear. Field size factor at d$_{max}$ was independent of wedge angle except for the field of 15$\times$15cm. and maximum difference of the field size factors for the field size was 1.4% for 4MV X-ray. When the wedge factor is determined, dependence of the factor on field size is negligible at d$_{max}$ but should be considered at deeper depth. Calculating dose distribution or MU, the beam hardening factor should be applied for 4~6MV X-ray beams, but might not be considered for 10MV beam. When wedge transmission factor was determined at d$_{max}$ or in air, field size factors for open field are also applicable to wedged fields, but otherwise, field size factor for each wedge or wedge factor depending on field size should be applied.

  • PDF

Evaluations of the Space Dose and Dose Reductions in Patients and Practitioners by Using the C-arm X-ray Tube Shielding Devices Developed in Our Laboratory

  • Kim, Jae Seok;Kim, Sung Ho;Lee, Bu Hyung;Kwon, Soo Il;Jung, Hai Jo;Hoe, Seong Wook;Son, Jin Hyun;Kang, Byeong Sam
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.241-249
    • /
    • 2016
  • The present study used a digital angiography x-ray device to measure the space dose and exposure dose of patients and practitioners using x-ray tube shielding devices developed in our laboratory. The intent of the study was to reduce the space dose within the test room, and to reduce the exposure dose of patients and practitioners. The patient and practitioner exposure doses were measured in five configurations in a human body model. The glass dosimeter was placed on the eye lenses, thyroid glands, left shoulder, right shoulder, and gonads. The beam was collimated at full size and at a 48% reduction for a comparative analysis of the measurements. The space dose was measured with an ion chamber at distances of 50 cm, 100 cm, and 150 cm from the x-ray tube under the following conditions: no shielding device; a shielding device made of 3-mm-thick lead (Pb) [Pb 3 mm shield], and a shielding device made of 3-mm-thick Pb (outside) and 3-mm-thick aluminum (Al) (inside) [Pb 3 mm+Al 3 mm shield]. The absorbed dose was the lowest when the 3-mm-thick Pb+3-mm-thick Al shield was used. For measurements made with collimated beams with a 48% reduction, the dose was the lowest at $154{\mu}Gy$ when the 3-mm-thick Pb+3-mm-thick Al shield was used, and was $9{\mu}Gy$ lower than the measurements made with no shielding device. If the space dose can be reduced by 20% in all situations where the C-arm is employed by using the x-ray tube shielding devices developed in our laboratory, this is expected to play an important role in reducing the annual exposure dose for patients, practitioners, and assistants.

Analysis of the minimum exposure position according to the additional filtration plate (부가여과판에 따른 최소한의 피폭 위치에 대한 분석)

  • Tae-Ri, Kim;Min-Ji, Kang;Sang-Hee, La;Yun-Jeong, Shin;Tae-Gyeom, Hong;Min-Cheol, Jeon
    • Journal of Advanced Technology Convergence
    • /
    • v.1 no.2
    • /
    • pp.11-17
    • /
    • 2022
  • The purpose is to find out where medical workers can receive the minimum radiation does in clinical. In order to sett RQR standard quality of radiation, put a Al 1.5mm filter(row and column: 10 cm × 10 cm) on X-ray tube. Al 0.9 mm, Cu 0.3 mm, Ni 0.3 mm used as a filter. The Acrylic phantom were set to 13.1 cm, 18.5 cm, 21.1 cm. by the object thickness was different. As a results, when we use Al 0.9 mm, 1853 nSv was the highest numeral. It is a point of anode low 50 cm, when we use 13.1 cm Acrylic phantom. When we use Cu 0.3 mm, 173 nSv was the lowest numeral. It is a point of anode low 150 cm, when we use 13.1 cm Acrylic Phantom. In this study, it was confirmed that the spatial scattering dose decreased as the distance from the X-ray tube increased. It is considered that more studies on the exposure of scattered doses are needed in the future.