• Title/Summary/Keyword: Scatter correction

Search Result 93, Processing Time 0.033 seconds

Study on Dosimetry Used TLD Dosimeter and Body Mass Index at Total Body Irradiation (전신조사방사선치료에서 열형광선량계를 이용한 선량 측정과 체질량지수에 관한 고찰)

  • Seo, Dong-Rin;Kim, Yeon-Soo;Kim, Dae-Sup;Yoon, Hwa-Ryong;Back, Geum-Mun;Kwak, Jung-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.2
    • /
    • pp.91-96
    • /
    • 2011
  • Purpose: The aim of study is to expose a more uniform dose depending on the relationship between a body mass index in patients who underwent radiation therapy and an acquired dosimetric information by using a thermoluminescent dosimeter. Materials and Methods: Since 2006 to August 2011 we investigated 28 people who underwent radiation therapy were enrolled in AMC. Each patient was measured on the head, neck, chest, abdomen, pelvis, thigh, knee joint, and ankle joint using the thermoluminescent dosimeter. The measurement value of each points compared with the prescribed center point, abdominal point, and dose measurements of points on which to base the abdomen and the patient's body mass index (BMI) were compared with reference point, abdomen dose. Results: 28 patients on prescribed dose in the abdomen by which the center point, an average dose was $100.6{\pm}5.5%$, and the other seven measuring points with the average maximum difference among the head, neck, chest, pelvic, thigh, knee, and ankle were $92.8{\pm}4.2%$, $97.6{\pm}6.2%$, $96.4{\pm}5.5%$, $102.6{\pm}5.3%$, $103.4{\pm}7.9%$, $95.8{\pm}5.9%$, $96.1{\pm}5.5%$. The relationship of abdominal point dose and the patient's body mass index (BMI) was analyzed a scatter plot, and the result of linear relationship analysis by regression method, the regression of the dose (y) was -1.009 BMI (x) plus 123.3 and coefficient of determination ($R^2$) was represented 0.697. Conclusion: The total body irradiation treatment process was evaluated the dose deviation and then the prescribed dose by which the average abdominal dose was satisfied with $100.6{\pm}5.5%$. Results of the relationship analysis between BMI and dose, if we apply the correction value for each patients, it can be achieved more uniform dose delivery.

  • PDF

Determination of Color Value (L, a, b) in Green Tea Using Near-Infrared Reflectance Spectroscopy (근적외 분광분석법을 이용한 녹차의 색도 분석)

  • Lee, Min-Seuk;Choung, Myoung-Gun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.spc
    • /
    • pp.108-114
    • /
    • 2008
  • Near infrared spectroscopy (NIRS) is a rapid and accurate analytical method for determining the composition of agricultural products and feeds. The applicability of near infrared reflectance spectroscopic method was tested to determine the color value (L, a, b) of green tea. A total of 162 green tea calibration samples and 82 validation samples were used for NIRS equation development and validation, respectively. In the developed NIRS equation for analysis of the color value (L, a, b), the most accurate equation for L value was obtained at 2, 8, 6, 1 (2nd derivative, 8 nm gap, 6 points smoothing, and 1pointsecond smoothing), and for a, and b value were obtained at 1, 4, 4, 1 (1st derivative, 4 nm gap, 4points smoothing, and 1 point second smoothing) math treatment condition with SNVD (Standard Normal Variate and Detrend) scatter correction method and entire spectrum ($400{\sim}2,500\;nm$) by using MPLS (Modified Partial Least Squares) regression. Validation results of these NIRS equations showed very low bias (L: 0.005%, a: 0.003%, b: -0.013%) and standard error of prediction (SEP, L: 0.361%, a: 0.141%, b: 0.306%) as well as high coefficient of determination ($R^2$, L: 0.905, a: 0.986, b: 0.931). Therefore, these NIRS equations can be applicable and reliable for determination of color value (L, a, b) of green tea, and NIRS method could be used as a mass screening technique for breeding programs and quality control in the green tea industry.

Comparison of Performance of Measuring Method of VIS/NIR Spectroscopic Spectrum to Predict Soluble Solids Content of 'Shingo' Pear (VIS/NIR 스펙트럼 측정모드에 따른 신고 배의 당도 예측성능 비교)

  • Suh, Sang-Ryong;Lee, Kyeong-Hwan;Yu, Seung-Hwa;Yoo, Soo-Nam;Choi, Yeong-Soo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.2
    • /
    • pp.130-139
    • /
    • 2011
  • Three modes of VIS/NIR spectroscopic measurement (interactance and two modes of transmission) were compared for their ability to estimate soluble solids content (SSC) of 'Shingo' pear non-destructively. The two transmission modes are named as full- and semi-transmission, where full-transmission stands for passing of light through abdomen of pear and semi-transmission is for transit of light mainly through flesh of pear. For comparison of the modes, prediction models developed from the collected spectroscopic data by the three modes were developed and tested for comparison of their performance. Partial least square regression (PSLR) was used to develop the models and various pre-processing methods were applied to develop models of high accuracy. The experiment was repeated three times with pears produced in different regions. The experiments resulted that selection of pre-processing is very important to attain accurate models, and multiplicative scatter correction (MSC) was selected as a pre-processor of high accuracy for the three modes of spectroscopic measurement in every experiment. Except for MSC, different group of pre-processing methods were selected for the three modes of measurement in every experiment without any tendency to the tested modes of measurement and pears of different produced region. Root-mean-square error of prediction (RMSEP) of prediction models of the three modes of measurement using prepreocessor of MSC were compared for their ability to estimate SSC. The models resulted in ranges of $0.37{\sim}0.57^{\circ}Brix$, $0.65{\sim}0.72^{\circ}Brix$, $0.39{\sim}0.51^{\circ}Brix$ for interactance, full- and semi-transmission, respectively. As shown, modes of semi-transmission and interactance resulted about the same level of prediction accuracy and were noted as modes of high performance to predict SSC.

Prediction of the Digestibility and Energy Value of Corn Silage by Near Infrared Reflectance Spectroscopy (근적외선분광법을 이용한 옥수수 사일리지의 소화율 및 에너지 평가)

  • Park Hyung-Soo;Lee Jong-Kyung;Lee Hyo-Won;Kim Su-Gon;Ha Jong-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.1
    • /
    • pp.45-52
    • /
    • 2006
  • This study was carried out to explore the accuracy of Near Infrared Reflectance Spectroscopy (NIRS) fer the prediction of digestibility and energy value of corn silages. The spectral data were regressed against a range of digestibility and energy parameters using modified partial least squares(MPLS) multivariate analysis in conjunction with first and second order derivatization, with scatter correction procedure(SNV-Detrend) to reduce the effect of extraneous noise. Calibration models for NIRS measurements gave multivariate correlation coefficients of determination$(R^2)$ and standard errors of cross validation of 0.92(SECV 1.73), 0.91(SECV 1.13) and 0.93(SECV 1.74) for in vitro dry matter digestibility(IVDMD), in vitro true digestibility(IVTD), and cellulase dry matter digestibility(CDMD), respectively. The standard error of prediction(SEP) and the multiple correlation coefficient of validation$(R^2v)$ on the validation set(n=39) was used in comparing the prediction accuracy. The SEP value was 0.30(TDN), 0.01(NEL), and 0.01(ME). The relative ability of NIRS to predict digestibility and energy value was very good for CDMD, total digestible nutrients(TDN), net energy fer lactation(NEL) and metabolizable energy(ME). This paper shows the potential of NIRS to predict the digestibility and energy value of con silage as a routine method in feeding programmes and for giving advice to farmers.

Prediction of Chemical Composition and Fermentation Parameters in Forage Sorghum and Sudangrass Silage using Near Infrared Spectroscopy

  • Park, Hyung-Soo;Lee, Sang-Hoon;Choi, Ki-Choon;Kim, Ji-Hye;So, Min-Jeong;Kim, Hyeon-Seop
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.3
    • /
    • pp.257-263
    • /
    • 2015
  • This study was conducted to assess the potential of using NIRS to accurately determine the chemical composition and fermentation parameters in fresh coarse sorghum and sudangrass silage. Near Infrared Spectroscopy (NIRS) has been increasingly used as a rapid and accurate method to analyze the quality of cereals and dried animal forage. However, silage analysis by NIRS has a limitation in analyzing dried and ground samples in farm-scale applications because the fermentative products are lost during the drying process. Fresh coarse silage samples were scanned at 1 nm intervals over the wavelength range of 680~2500 nm, and the optical data were obtained as log 1/Reflectance (log 1/R). The spectral data were regressed, using partial least squares (PLS) multivariate analysis in conjunction with first and second order derivatization, with a scatter correction procedure (standard normal variate and detrend (SNV&D)) to reduce the effect of extraneous noise. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV). The results of this study showed that NIRS predicted the chemical constituents with a high degree of accuracy (i.e. the correlation coefficient of cross validation ($R^2{_{cv}}$) ranged from 0.86~0.96), except for crude ash which had an $R^2{_{cv}}$ of 0.68. Comparison of the mathematical treatments for raw spectra showed that the second-order derivatization procedure produced the best result for all the treatments, except for neutral detergent fiber (NDF). The best mathematical treatment for moisture, acid detergent fiber (ADF), crude protein (CP) and pH was 2,16,16 respectively while the best mathematical treatment for crude ash, lactic acid and total acid was 2,8,8 respectively. The calibrations of fermentation products produced poorer calibrations (RPD < 2.5) with acetic and butyric acid. The pH, lactic acid and total acids were predicted with considerable accuracy at $R^2{_{cv}}$ 0.72~0.77. This study indicated that NIRS calibrations based on fresh coarse sorghum and sudangrass silage spectra have the capability of assessing the forage quality control

Prediction of the Chemical Composition and Fermentation Parameters of Fresh Coarse Italian Ryegrass Haylage using Near Infrared Spectroscopy

  • Kim, Ji Hye;Park, Hyung Soo;Choi, Ki Choon;Lee, Sang Hoon;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • Near infrared spectroscopy (NIRS) is a rapid and accurate method for analyzing the quality of cereals, and dried animal forage. However, one limitation of this method is its inability to measure fermentation parameters in dried and ground samples because they are volatile, and therefore, respectively lost during the drying process. In order to overcome this limitation, in this study, fresh coarse haylage was used to test the potential of NIRS to accurately determine chemical composition and fermentation parameters. Fresh coarse Italian ryegrass haylage samples were scanned at 1 nm intervals over a wavelength range of 680 to 2500 nm, and optical data were recorded as log 1/reflectance. Spectral data, together with first- and second-order derivatives, were analyzed using partial least squares (PLS) multivariate regressions; scatter correction procedures (standard normal variate and detrend) were used in order to reduce the effect of extraneous noise. Optimum calibrations were selected based on their low standard error of cross validation (SECV) values. Further, ratio of performance deviation, obtained by dividing the standard deviation of reference values by SECV values, was used to evaluate the reliability of predictive models. Our results showed that the NIRS method can predict chemical constituents accurately (correlation coefficient of cross validation, $R_{cv}^2$, ranged from 0.76 to 0.97); the exception to this result was crude ash ($R_{cv}^2=0.49$ and RPD = 2.09). Comparison of mathematical treatments for raw spectra showed that second-order derivatives yielded better predictions than first-order derivatives. The best mathematical treatment for DM, ADF, and NDF, respectively was 2, 16, 16, whereas the best mathematical treatment for CP and crude ash, respectively was 2, 8, 8. The calibration models for fermentation parameters had low predictive accuracy for acetic, propionic, and butyric acids (RPD < 2.5). However, pH, and lactic and total acids were predicted with considerable accuracy ($R_{cv}^2$ 0.73 to 0.78; RPD values exceeded 2.5), and the best mathematical treatment for them was 1, 8, 8. Our findings show that, when fresh haylage is used, NIRS-based calibrations are reliable for the prediction of haylage characteristics, and therefore useful for the assessment of the forage quality.

Prediction of Internal Quality for Cherry Tomato using Hyperspectral Reflectance Imagery (초분광 반사광 영상을 이용한 방울토마토 내부품질 인자 예측)

  • Kim, Dae-Yong;Cho, Byoung-Kwan;Kim, Young-Sik
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.324-331
    • /
    • 2011
  • Hyperspectral reflectance imaging technology was used to predict internal quality of cherry tomatoes with the spectral range of 400-1000 nm. Partial least square (PLS) regression method was used to predict firmness, sugar content, and acid content. The PLS models were developed with several preprocessing methods, such as normalization, standard normal variate (SNV), multiplicative scatter correction (MSC), and derivative of Savitzky Golay. The performance of the prediction models were investigated to find the best combination of the preprocessing and PLS models. The coefficients of determination ($R^{2}_{p}$) and standard errors of prediction (SEP) for the prediction of firmness, sugar content, and acid content of cherry tomatoes from green to red ripening stages were 0.876 and 1.875kgf with mean of normalization, 0.823 and $0.388^{\circ}Bx$ with maximum of normalization, and 0.620 and 0.208% with maximum of normalization, respectively.

The Wandering of Classic Manuscripts and Their Return to the Library (고전 필사본 유랑과 도서관으로의 귀환)

  • Hee-Yoon Yoon
    • Journal of Korean Library and Information Science Society
    • /
    • v.53 no.4
    • /
    • pp.1-23
    • /
    • 2022
  • The record is both an palmistry and a fingerprint for human life and world of knowledge. Books, which are synonymous with records, are a channel through which history is traced and a window to savor. And the most primitive form of the book is the classics of ancient Greece and Rome, and the best part is the manuscript. It refers to the original recorded on papyrus, parchment, paper, etc. and the translated and translated copies of them. If we reflect on the long history of knowledge and culture, the classic manuscripts have continued to scatter and collect like a river flowing through time and space due to not only natural disasters, but also artificial cultural vandalism and the bibliocaust. Therefore, this study traced and linked the wandering and library return of classic manuscripts from ancient Greece to the medieval Renaissance period. As a result, dynasties and empires, monarchs and prime ministers, generals and conquerors, nobles and wealthy, clergy and scholars concentrated on collecting and translating classical manuscripts. If the ancient Greek and Roman scholars did not record knowledge and wisdom in papyrus and parchment, the medieval Byzantine and Islamic Empires did not collect, translate and reproduce classics, the book hunters didn't keep track of the classics, the Renaissance humanists did not restore and reinterpret the classics through intellectual exodus, and the historical library did not collect and preserve the classics and their translations, modern people would not have access to classical knowledge. Nevertheless, the tracing of classical manuscripts is an aporia in which many difficulties and contradictions overlap in the tracing of classic manuscripts due to historical flow, geographical wandering, and linguistic transformation. When a new manuscript is discovered and interpreted, correction and supplementation are inevitable, so the pursuit of the wandering and return of the classic manuscripts through follow-up research must be continued.

Development of a New Cardiac and Torso Phantom for Verifying the Accuracy of Myocardial Perfusion SPECT (심근관류 SPECT 검사의 정확도 검증을 위한 새로운 심장.흉부 팬텀의 개발)

  • Yamamoto, Tomoaki;Kim, Jung-Min;Lee, Ki-Sung;Takayama, Teruhiko;Kitahara, Tadashi
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.389-399
    • /
    • 2008
  • Corrections of attenuation, scatter and resolution are important in order to improve the accuracy of single photon emission computed tomography (SPECT) image reconstruction. Especially, the heart movement by respiration and beating cause the errors in the corrections. Myocardial phantom is used to verify the correction methods, but there are many different parts in the current phantoms in actual human body. Therefore the results using a phantom are often considered apart from the clinical data. We developed a new phantom that implements the human body structure around the thorax more faithfully. The new phantom has the small mediastinum which can simulate the structure in which the lung adjoins anterior, lateral and apex of myocardium. The container was made of acrylic and water-equivalent material was used for mediastinum. In addition, solidified polyurethane foam in epoxy resin was used for lung. Five different sizes of myocardium were developed for the quantitative gated SPECT (QGS). The septa of all different cardiac phantoms were designed so that they can be located at the same position. The proposed phantom was attached with liver and gallbladder, the adjustment was respectively possible for the height of them. The volumes of five cardiac ventricles were 150.0, 137.3, 83.1, 42.7 and 38.6ml respectively. The SPECT were performed for the new phantom, and the differences between the images were examined after the correction methods were applied. The three-dimensional tomography of myocardium was well reconstructed, and the subjective evaluations were done to show the difference among the various corrections. We developed the new cardiac and torso phantom, and the difference of various corrections was shown on SPECT images and QGS results.

  • PDF

The Study of New Reconstruction Method for Brain SPECT on Dual Detector System (Dual detector system에서 Brain SPECT의 new reconstruction method의 연구)

  • Lee, Hyung-Jin;Kim, Su-Mi;Lee, Hong-Jae;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Purpose: Brain SPECT study is more sensitive to motion than other studies. Especially, when applying 1-day subtraction method for Diamox SPECT, it needs shorter study time in order to prevent reexamination. We were required to have new study condition and analysing method on dual detector system because triple head camera in Seoul National University Hospital is to be disposed. So we have tried to increase image quality and make the dual and triple head to have equivalent study time by using a new analysing program. Materials and Methods: Using IEC phantom, we estimated contrast, SNR and FWHM. In Hoffman 3D brain phantom which is similar with real brain, we were on the supposition that 5% of injected doses were distributed in brain tissue. To compare with existing FBP method, we used fan-beam collimator. And we applied 15 sec, 25 sec/frame for each SEPCT studies using LEHR and LEUHR. We used OSEM2D and Onco-flash3D reconstruction method and compared reconstruction methods between applied Gaussian post-filtering 5mm and not applied as well. Attenuation correction was applied by manual method. And we did Brain SPECT to patient injected 15 mCi of $^{99m}Tc$-HMPAO according to results of Phantom study. Lastly, technologist, MD, PhD estimated the results. Results: The study shows that reconstruction method by Flash3D is better than exiting FBP and OSEM2D when studied using IEC phantom. Flowing by estimation, when using Flash3D, both of 15 sec and 25 sec are needed postfiltering 5 mm. And 8 times are proper for subset 8 iteration in Flash3D. OSEM2D needs post-filtering. And it is proper that subset 4, iteration 8 times for 15sec and subset 8, iteration 12 times for 25sec. The study regarding to injected doses for a patient and study time, combination of input parameter-15 sec/frame, LEHR collimator, analysing program-Flash3D, subset 8, iteration 8times and Gaussian post-filtering 5mm is the most appropriate. On the other hands, it was not appropriate to apply LEUHR collimator to 1-day subtraction method of Diamox study because of lower sensitivity. Conclusions: We could prove that there was also an advantage of short study time effectiveness in Dual camera same as Triple gamma camera and get great result of alternation from existing fan-beam collimator to parallel collimator. In addition, resolution and contrast of new method was better than FBP method. And it could improve sensitivity and accuracy of image because lesser subjectivity was input than Metz filter of FBP. We expect better image quality and shorter study time of Brain SPECT on Dual detector system.

  • PDF