• 제목/요약/키워드: Scanning interferometry

Search Result 52, Processing Time 0.021 seconds

Development of Optical Probe to Inspect Micron Scale Part in Micro-Factory (Micro-Factory 공정간 마이크로 부품 검사 프로브 개발)

  • Kim Geehong;Lee D.W.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.424-428
    • /
    • 2005
  • This paper shows a non-contact optical method to inspect micron scale parts which will be manufactured in micro-factory system. This inspection system should have some characteristics like a small size, flexibility, and high measuring speed. In the viewpoint of measuring capabilities, it also has resolution under micron scale with measuring range over millimeter scale. Two methods will be presented in this paper, one is Moire and the other is white-light scanning interferometry. Also some experimental results will be presented to show the possibilities of the proposed inspection system.

  • PDF

Roughness Measurement Performance Obtained with Optical Interferometry and Stylus Method

  • Rhee Hyug-Gyo;Lee Yun-Woo;Lee In-Won;Vorburger Theodore V.
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.48-54
    • /
    • 2006
  • White-light scanning interferometry (WLI) and phase shifting interferometry (PSI) are increasingly used for surface topography measurements, particularly for areal measurements. In this paper, we compare surface profiling results obtained from above two optical methods with those obtained from stylus instruments. For moderately rough surfaces ($Ra{\approx}500\;nm$), roughness measurements obtained with WLI and the stylus method seem to provide close agreement on the same roughness samples. For surface roughness measurements in the 50 nm to 300 nm range of Ra, discrepancies between WLI and the stylus method are observed. In some cases the discrepancy is as large as 109% of the value obtained with the stylus method. By contrast, the PSI results are in good agreement with those of the stylus technique.

Measurement of Deformations in Micro-Area Using High Resolution AFM Scanning Moiré Technique (고분해능 원자 현미경 스캐닝 무아레 기법을 이용한 미소 영역의 변형량 측정)

  • Park, Jin-Hyoung;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.659-664
    • /
    • 2007
  • $Moire\'{e}$ interferometry is a useful technique to assess the reliability of electronic package because $Moire\'{e}$ interferometry can measure the whole-field and real-time deformations. The shear strain of a small crack site is important to the reliability assessment of electronic package. The optical limitation of $Moire\'{e}$ interferometry makes ambiguous the shear strain of a small area. An atomic force microscope (AFM) is used to measure the profile of a micro site. High resolution of AFM can apply to the $Moire\'{e}$ technique. AFM $Moire\'{e}$ technique is useful to measure the shear strain of a small area. In this research, the method to accurately measure the deformation of a small area by using AFM $Moire\'{e}$ is proposed. A phase-shifting method is applied to improve the resolution of AFM $Moire\'{e}$.

Phase Peak Ambiguity According to Illumination in White-Light Phase-Shifting Interferometry (백색광 간섭계의 위상 정점 알고리즘에서 조명에 따른 위상 정점 모호성에 관한 연구)

  • Kim, Gee-Hong;Lee, Hyung-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.85-91
    • /
    • 2008
  • White light scanning interferometry has gotten a firm position in 3D surface profile measuring field. Recently, the LCD industry gave a chance for this technology to enter into real industry fields. It is known that white-light phase-shifting algorithm give a best resolution compare to other algorithms, but there are some problems to be resolved. One of them is 300nm jump in height profile, called bat-wing effect. The main reason of this problem is an ambiguity of phase-peak detection algorithm, and some solution has been proposed, but it didn't work perfectly. In this paper, I will show the cases when these effects are occurred, and these height discrepancies will be almost disappeared when broad-band illuminators are used.

Low-coherence non-scanning michelson interferometry using visible broadband light source (가시광 영역의 저간섭성 광원을 이용한 마이겔슨 간섭계)

  • 송민호;이병호
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.10
    • /
    • pp.160-167
    • /
    • 1996
  • A new pathlength deviation detection technique which is composed of michelson interferometer is described and verified experimentally. The technique uses a sub-threshold biased visible laser diode of 20$\mu$m coherence length as a low-coherent light source. And for zeroth-order fringe(which is the largest among fringes) identification we used a piezoelectric transducer with a large modulation smplitude, which enables without the need of constant velocity scanning, to distinguish reflection surfaces separated by more than 10$\mu$m with a resolution of less than half-wavelength.

  • PDF

Improved Lateral Resolution of Interferometric Microscope Using Precision Scanner (정밀 스캐너를 이용한 간섭 현미경의 가로방향 분해능 향상)

  • 박성림;박도민;류재욱;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.116-123
    • /
    • 1998
  • An interferometric microscope with an improved lateral resolution is presented. The nanometer resolution XY stage is integrated into standard temporal phase shifting interferometer. The nanometer resolution XY stage is used to position specimen in subpixel of CCD detector, therefore CCD detector's sampling is improved. Two scanning algorithms and those simulation results are also presented. The simulation results show that scanning algorithms improve CCD detector's sampling significantly, and interferometeric microscope's lateral resolution is improved also.

  • PDF

Thin film thickness profile measurement using white light scanning interferometry (백색광 주사 간섭법을 이용한 박막의 두께 형상 측정법)

  • 김기홍;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.5
    • /
    • pp.373-378
    • /
    • 1999
  • White light scanning interferometry is increasingly used for precision profile metrology of engineering surfaces, but its current application is primarily limited to opaque surfaces with relatively simple optical reflection behaviors. In this paper, a new attempt is made to extend the interferometric method to the thickness profile measurement of transparent thin film layers. An extensive frequency domain analysis of multiple reflection is performed to allow both the top and bottom interfaces of a thin film layer to be measured independently at the same time using nonlinear least squares technique. This rigorous approach provides not only point-by-point thickness probing but also complete volumetric film profiles digitized in three dimensions.

  • PDF