• Title/Summary/Keyword: Scanning Tunneling Spectroscopy

Search Result 52, Processing Time 0.036 seconds

Spatial mapping of screened electrostatic potential and superconductivity by scanning tunneling microscopy/spectroscopy

  • Hasegawa, Yukio;Ono, Masanori;Nishio, Takahiro;Eguchi, Toyoaki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.12-12
    • /
    • 2010
  • By using scanning tunneling microscopy/spectroscopy (STM/S), we can make images of various physical properties in nanometer-scale spatial resolutions. Here, I demonstrate imaging of two electron-correlated subjects; screening and superconductivity by STM/S. The electrostatic potential around a charge is described with the Coulomb potential. When the charge is located in a metal, the potential is modified because of the free electrons in the host. The potential modification, called screening, is one of the fundamental phenomena in the condensed matter physics. Using low-temperature STM we have developed a method to measure electrostatic potential in high spatial and energy resolutions, and observed the potential around external charges screened by two-dimensional surface electronic states. Characteristic potential decay and the Friedel oscillation were clearly observed around the charges [1]. Superconductivity of nano-size materials, whose dimensions are comparable with the coherence length, is quite different from their bulk. We investigated superconductivity of ultra-thin Pb islands by directly measuring the superconducting gaps using STM. The obtained tunneling spectra exhibit a variation of zero bias conductance (ZBC) with a magnetic field, and spatial mappings of ZBC revealed the vortex formation [2]. Size dependence of the vortex formation will be discussed at the presentation.

  • PDF

High Crystalline Epitaxial Bi2Se3 Film on Metal and Semiconductor Substrates

  • Jeon, Jeong-Heum;Jang, Won-Jun;Yun, Jong-Geon;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.302-302
    • /
    • 2011
  • The binary chalcogenide semiconductor Bi2Se3 is at the center of intensive research on a new state of matter known as topological insulators. It has Dirac point in their band structures with robust surface states that are protected against external perturbations by strong spin-orbit coupling with broken inversion symmetry. Such unique band configurations were confirmed by recent angle-resolved photoelectron emission spectroscopy experiments with an unwanted n-type doping effect, showing a Fermi level shift of about 0.3 eV caused by atomic defects such as Se vacancies. Since the number of defects can be reduced using the molecular beam epitaxy (MBE) method. We have prepared the Bi2Se3 film on noble metal Au(111) and semiconductor Si(111) substrates by MBE method. To characterize the film, we have introduced several surface sensitive techniques including x-ray photoemission electron spectroscopy (XPS) and micro Raman spectroscopy. Also, crystallinity of the film has been confirmed by x-ray diffraction (XRD). Using home-built scanning tunneling microscope, we observed the atomic structure of quintuple layered Bi2Se3 film on Au(111).

  • PDF

Morphology Observation and Electrical Properties measuring of Self-Assembled Organic Monolayers on Au(111) Substrate Using Scanning Tunneling Microscopy (STM을 이용한 Au(111)기판에 자기조립화된 유기초박막의 모폴로지관찰 및 전기적특성 측정)

  • Lee, Nam-Suk;Shin, Hoon-Kyu;Chang, Jeong-Soo;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1715-1717
    • /
    • 2004
  • We attempt to investigate morphology of self-assembled dipyridinium dithioacetate on Au(111) substrate by Scanning Tunneling Microscopy(STM). Also, we measured electrical properties using Scanning Tunneling Spectroscopy(STS). Sample that use this experiment acquires thiol function beside quantity by dipyridinium dithioacetate, is structure that can be self-assembled easily to Au(111) substrate. The same self-assembly procedure was used for two different concentrations, 0.5mmol/ml and 1mmol/ml. Dilute density of sample by 0.5mmol/ml, 1mmol/ml and observed dipyridinium dithioacetate's image by STM after self-assembled on Au(111) substrate. The structure of Tip/SAMs/Au(111) has been used measurement for electrical properties(i-v) using STM. The current-voltage measurement result, observed negative differential resistance(NDR) properties.

  • PDF

Current-Voltage Properties measuring of Dipyridinium Molecule Using Scanning Tunneling Microscopy (STM에 의한 Dipyridinium 분자의 전압-전류 특성 측정)

  • Lee, Nam-Suk;Shin, Hoon-Kyu;Chang, Jeong-Soo;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.485-488
    • /
    • 2004
  • 본 연구에서는 dipyridinium dithioacetate 분자를 Au(111) 표면에 자기조립하여 STM 탐침-유기 단분자막-Au(111)기판의 수직구조로 STM 측정시스템을 이용하여, 전기적 특성을 관찰하였다. 먼저 Au(111)기판을 Piranha용액$(H_2SO_4:H_2O_2=3:1)$으로 Au 표면을 전처리 하였다. 전처리한 Au(111) 기판을 dipyridinium dithioacetate 1mol/ml 농도로 자기조립 하였으며, 자기조립막의 표면 구조를 STM으로 관찰하였다. dipyridinium dithioacetate의 전기적 특성은 STM 탐침-유기단분자막-Au(111) 기판의 수직구조로 STS를 이용하여 조사하였다. 전압과 전류 측정에서 전압이 증가함에 따라 전류가 감소하는 부성 미분저항(NDR)의 특성이 관찰 되었다. NDR 수치가 $-545\;[m\Omega/cm^2]$였고, PVCR은 1.64:1 이었다.

  • PDF

Free-standing graphene intercalated nanosheets on Si(111)

  • Pham, Trung T.;Sporken, Robert
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.297-308
    • /
    • 2017
  • By using electron beam evaporation under appropriate conditions, we obtained graphene intercalated sheets on Si(111) with an average crystallite size less than 11nm. The formation of such nanocrystalline graphene was found as a time-dependent function of carbon deposition at a substrate temperature of $1000^{\circ}C$. The structural and electronic properties as well as the surface morphology of such produced materials have been confirmed by reflection high energy electron diffraction, Auger electron spectroscopy, X-ray photoemission spectroscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy and scanning tunneling microscopy.

Formation and Structure of Self-Assembled Monolayers of Octylthioacetates on Au(111) in Catalytic Tetrabutylammonium Cyanide Solution

  • Park, Tae-Sung;Kang, Hun-Gu;Choi, In-Chang;Chung, Hoe-Il;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.441-444
    • /
    • 2009
  • The formation and structure of self-assembled monolayers (SAMs) by the adsorption of acetyl-protected octylthioacetate (OTA) on Au(111) in a catalytic tetrabutylammonium cyanide (TBACN) solution were examined by means of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). Molecular-scale STM imaging revealed that OTA molecules on Au(111) in a pure solvent form disordered SAMs, whereas they form well-ordered SAMs showing a c(4 × 2) structure in a catalytic TBACN solution. XPS and CV measurements also revealed that OTA SAMs on Au(111) formed in a TBACN solution have a stronger chemisorbed peak in the S 2p region at 162 eV and a higher blocking effect compared to OTA SAMs formed in a pure solvent. In this study, we clearly demonstrate that TBACN can be used as an effective deprotecting reagent for obtaining well-ordered SAMs of thioacetyl-protected molecules on gold.

Local Electronic Structures of Graphene Probed by Scanning Tunneling Spectroscopy

  • Jang, Won-Jun;Lee, Eui-Sup;Kim, Howon;Yoon, JongKeon;Chang, Yunhee;Kim, Yong-Hyun;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.132.2-132.2
    • /
    • 2013
  • Electrons in graphene make ballistic transport with very high mobility (${\sim}2{\times}105 $cm2V-1s-1), which holds promises for applications in fast electronic devices. However, such expectations have been hampered by the semi-metallicity or zero bandgap of graphene, which makes it impossible to completely turn off graphene transistor devices. Here, we report the observations of local bandgap modulations in Moir$\acute{e}$ patterned graphene on metal substrates using scanning tunneling microscopy and spectroscopy. The Moir$\acute{e}$ patterned graphene was made by combinations of self-assembly processes, and they showed additional electronic states that could be interpreted as sub-band states. Our experimental observations could be explained with orbital transitions of carbon atoms from sp2 to sp3, as supported by our density functional theory calculation results. Our findings will add new poweful components for device applications.

  • PDF

기울어진 6H-SiC(0001) 표면에서 성장된 그라핀 나노구조의 가장자리 구조에 대한 연구

  • Kim, Il-Yu;Hwang, Chan-Yong;Kim, Won-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.344-344
    • /
    • 2010
  • 그라핀 나노리본은 독특한 전기적 특성으로 인하여 차세대 나노 소자용 신소재로 주목을 받고 있으며 리본의 폭과 가장자리 구조에 따라 여러 가지 다른 특성을 나타낸다고 알려져 있다. 우리는 Scanning Tunneling Microscopy(STM) 실험을 통하여 기울어진 6H-SiC(0001) 면 위에서 그라핀 나노리본의 성장 가능성을 조사하고 성장된 그라핀 나노구조의 가장자리에서 나타나는 구조에 대하여 연구하였다. 그라핀 성장의 초기 단계에서는 리본 형태의 그라핀 나노 구조를 볼 수 있었으나 그라핀 성장 과정을 거치면서 SiC 기판의 잘 정렬된 계단 구조가 망가져서 그라핀 나노리본 배열의 형성에는 한계가 있음을 확인할 수 있었다. 원자 수준의 STM 이미지를 통해서 그라핀 나노 구조의 가장자리에서 큰 육각형 형태의 양자 간섭 무늬를 관찰하였는데 이러한 형태는 흑연 위의 그라핀 나노 조각에 대한 연구에서 관찰된 것과 동일한 것으로 Armchair 형태의 가장자리 구조의 경우에 형성된다고 알려져 있다.[1] 이로부터 SiC(0001) 표면위에 형성된 그라핀 나노 구조의 경우에도 Armchair 형태의 가장자리 구조가 더 안정적임을 알 수 있었다. 이러한 구조의 국소 전자 구조에 대하여 알아보기 위하여 Scanning Tunneling Spectroscopy 측정도 함께 수행하였다.

  • PDF

Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

  • Kang, Hun-Gu;Kim, You-Young;Park, Tae-Sun;Park, Joon-B.;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1253-1257
    • /
    • 2011
  • The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at $50^{\circ}C$ formed well-ordered SAMs with a $(2{\surd}3{\times}{\surd}5)R41^{\circ}$ packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments ($C_5H_9^+$, m/e = 69) generated via C-S bond cleavage and the parent molecular species ($C_5H_9SH^+$, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

Novel Scanning Tunneling Spectroscopy for Volatile Adborbates

  • Choi, Eun-Yeoung;Lee, Youn-Joo;Lyo, In-Whan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.58-58
    • /
    • 2010
  • Reactive or unstable adsorbates are often difficult to study spectroscopically. They may have, for instance, resonance states lying close to the Fermi level, inducing them to desorb or decompose by the probe itself, low-energy tunneling electrons. In order to overcome this limitation, we developed a novel method, which we call x-ramp scan. The method sweeps the bias voltage, with the simutaneous scan along the imaging direction, in a constant current mode. This mapping yields the tip-height variation as a function of bias, or Z(V), at nominally always fresh surface. We applied this method to the investigation of methanol-induced molecular features, attributed to methoxy, found on NiAl(110) surface. These were produced by methanol molecules deposited by a pulse injection method onto the metallic surface. Our study shows adsorbed methoxy are very reactive to the bias voltage, rendering the standard spectroscopy useless. Our new x-ramp scan shows that the decomposition of adsorbates occurs at the sample bias of 3.63 V, and proceeds with the lifetime of a few milliseconds. The details of the method will be provided at the discussion.

  • PDF