• 제목/요약/키워드: Scanning Speed

검색결과 670건 처리시간 0.028초

고성능 카메라를 이용한 철도차량 주행장치용 고속스케닝시스템 알고리즘에 관한 연구 (Study on Algorithm of High-Speed Scanning System for Railway Vehicle Running Units Using High Performance Camera)

  • 허성범;이희성
    • 한국안전학회지
    • /
    • 제35권4호
    • /
    • pp.9-14
    • /
    • 2020
  • It is necessary to apply a non-contact high-speed scanning system that can measure in real time in order to prevent the dropping and deformation of the main parts of railway vehicles during high-speed running. Recently, research on a scanning system that detects the deformation state of main parts from a video image taken using a high-performance camera has been actively pursued. In this study, we researched an analysis algorithm of a high-speed scanning system that uses a high-performance camera to monitor the deformation and drop-out state of the main components of the running units equipment in real time.

High-speed angular-scan pulse-echo ultrasonic propagation imager for in situ non-destructive evaluation

  • Abbas, Syed H.;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • 제22권2호
    • /
    • pp.223-230
    • /
    • 2018
  • This study examines a non-contact laser scanning-based ultrasound system, called an angular scan pulse-echo ultrasonic propagation imager (A-PE-UPI), that uses coincided laser beams for ultrasonic sensing and generation. A laser Doppler vibrometer is used for sensing, while a diode pumped solid state (DPSS) Q-switched laser is used for generation of thermoelastic waves. A high-speed raster scanning of up to 10-kHz is achieved using a galvano-motorized mirror scanner that allows for coincided sensing and for the generation beam to perform two-dimensional scanning without causing any harm to the surface under inspection. This process allows for the visualization of longitudinal wave propagation through-the-thickness. A pulse-echo ultrasonic wave propagation imaging algorithm (PE-UWPI) is used for on-the-fly damage visualization of the structure. The presented system is very effective for high-speed, localized, non-contact, and non-destructive inspection of aerospace structures. The system is tested on an aluminum honeycomb sandwich with disbonds and a carbon fiber-reinforced plastic (CFRP) honeycomb sandwich with a layer overlap. Inspection is performed at a 10-kHz scanning speed that takes 16 seconds to scan a $100{\times}100mm^2$ area with a scan interval of 0.25 mm. Finally, a comparison is presented between angular-scanning and a linear-scanning-based pulse-echo UPI system. The results show that the proposed system can successfully visualize defects in the inspected specimens.

광조형법에 있어서 조형정도향상을 위한 연구 (The Study of improvement for Shape Accuracy in Stereolithography)

  • 강원주;김준안;백인환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.847-851
    • /
    • 1997
  • In the stereolithography process, the accuracy of cured shape depends on laser power, scanning speed, scanning pattern, resin characteristics etc. When three-dimensional objects are built, higher laser power gives higher building efficiency. Normally we could control scanning speed and scanning pattern, which affect curing thickness and generate volume of curl in & after building. Oligomer, Monomer and Initiator are major components. Kinds and of them decide characteristic of resin. In this paper, we deak with major facts and their characteristics for precision shape building.

  • PDF

광조형법에 있어서 조형정도향상을 위한 연구 (The Study on Improvement of Shape Accuracy in Stereolithography)

  • 김준안;백인환
    • 한국정밀공학회지
    • /
    • 제14권5호
    • /
    • pp.15-21
    • /
    • 1997
  • In the stereolithography process, the accuracy of cured shape depends on laser power, scanning speed, scanning pattern, resin characteristics etc. When three-dimensional objects are built, higher laser power gives higher building efficiency. Normally we could control scanning speed and scanning pattern, which affect curing thickness and generate volume of curl in & after building. Olgomer, Monomer and Initiator are major components. Kinds and volume of them decide characteristic of resin. In this paper, we deal with major facts and their characteristics for precision shape building.

  • PDF

고속 3차원 측정 및 칼라 이미징을 위한 다중 광탐침 공초점 주사 현미경 (Confocal Scanning Microscopy with Multiple Optical Probes for High Speed 3D Measurements and Color Imaging)

  • 천완희;이승우;안진우;권대갑
    • 반도체디스플레이기술학회지
    • /
    • 제7권1호
    • /
    • pp.11-16
    • /
    • 2008
  • Confocal scanning microscopy is a widely used technique for three dimensional measurements because it is characterized by high resolution, high SNR and depth discrimination. Generally an image is generated by moving one optical probe that satisfies the confocal condition on the specimen. Measurement speed is limited by movement speed of the optical probe; scanning speed. To improve measurement speed we increase the number of optical probes. Specimen region to scan is divided by optical probes. Multi-point information each optical probe points to can be obtained simultaneously. Therefore image acquisition speed is increased in proportion to the number of optical probes. And multiple optical probes from red, green and blue laser sources can be used for color imaging and image quality, i.e., contrast, is improved by adding color information by this way. To conclude, this technique contributes to the improvement of measurement speed and image quality.

  • PDF

마이크로 광 조형에서 레이저 주사조건에 따른 광 경화성수지의 경화현상 (Photopolymer Solidification Phenomena Considering Laser Exposure Conditions in Micro-stereolithography Technology)

  • 이인환;조동우;이응숙
    • 한국정밀공학회지
    • /
    • 제21권3호
    • /
    • pp.171-179
    • /
    • 2004
  • Micro-stereolithography technology has made it possible to fabricate a freeform 3D microslructure. This technology is based on conventional stereolithography, in which a UV laser beam irradiates the open surface of a UV-curable liquid photopolymer, causing it to solidify. In micro-stereolithography, a laser beam of a few $\mu m$ diameter is used to solidify a very small area of the photopolymer. This is one of the key technological elements, and can be achieved by using a focusing lens. Thus, the solidification phenomena of the liquid photopolymer must be carefully investigated. In this study, the photopolymer solidification phenomena in response to variations in the scanning pitch of a focused laser beam was investigated experimentally. The effect of layer thickness on the solidification width and depth was also examined. These studies were conducted under the conditions of relatively lower laser power and relatively higher scanning speed. Moreover, the photopolymer solidification phenomena for the relatively higher laser power and lower scanning speed was investigated, too. In this case, comparing to the case of lower laser power and higher scanning speed, the photopolymer absorbed large amount of irradiation energy of the laser beam. These results were compared with those obtained from a photopolymer solidification model. From these results, a new laser-scanning scheme was proposed according to the shape of the 3D model. Samples by each method were fabricated successfully.

연속적 스캐닝 방법을 이용한 이광자 광중합 공정의 제작 속도 및 정밀도 개선에 관한 연구 (Continuous Scanning Method for Improvement of Precision and Fabrication Efficiency of Two-Photon Stereolithography)

  • 임태우;손용;양동열;공홍진;이광섭;박상후
    • 대한기계학회논문집A
    • /
    • 제32권5호
    • /
    • pp.396-401
    • /
    • 2008
  • Minimization of processing time in two-photon stereolithography (TPS) has been one of important issues. Generally, a voxel scanning method (VSM) has been used in TPS because the method is very profitable for the stable fabrication irrespective of jittering and response time of scanning equipments such as a stage and a galvano-scanner. However, supplementary processing time due to the on/off control of a shutter for the generation of each voxel is required inevitably in VSM; by this reason, much processing time takes to fabricate largescale micropatterns and three-dimensional patterns. In this work, a continuous scanning method (CSM), generating patterns by movement of beam focus with a constant speed, is proposed for the improvements of scanning speed and precision in TPS. Some line patterns are fabricated by each scanning method to demonstrate the usefulness of CSM with viewpoints of scanning speed and precision.

고성능 레이저 프린터용 고속 스캐너모터 (High Speed Scanner Motor for High Performance Laser Printer)

  • 성부현;김성민;우기명;좌성훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.829-836
    • /
    • 2000
  • High performance laser printer requires high speed scanning motor, which can operate up to 40,000 rpm. However, development of high speed scanning motor has been restricted due to the practical problems such as use of high speed bearing, compact circuit design and high cost. In this study, we designed a high speed scanner motor for use on laser scanning unit and discussed some design principles including the reduction method of cogging torque of the motor, development of hemispherical aerodynamic bearing, windage loss estimation, and operating circuit design to reduce noise.

  • PDF

High-speed Two-photon Laser Scanning Microscopy Imaging of in vivo Blood Cells in Rapid Circulation at Velocities of Up to 1.2 Millimeters per Second

  • Boutilier, Richard M.;Park, Jae Sung;Lee, Ho
    • Current Optics and Photonics
    • /
    • 제2권6호
    • /
    • pp.595-605
    • /
    • 2018
  • The two-photon process of microscopy provides good spatial resolution and optical sectioning ability when observing quasi-static endogenous fluorescent tissue within an in vivo animal model skin. In order to extend the use of such systems, we developed a two-photon laser scanning microscopy system capable of also capturing $512{\times}512$ pixel images at 90 frames per second. This was made possible by incorporating a 72 facet polygon mirror which was mounted on a 55 kRPM motor to enhance the fast-scan axis speed in the horizontal direction. Using the enhanced temporal resolution of our high-speed two-photon laser scanning microscope, we show that rapid processes, such as fluorescently labeled erythrocytes moving in mouse blood flow at up to 1.2 mm/s, can be achieved.

백색광 주사 간섭계의 측정 속도 개선을 위한 서브 샘플링 기법 연구 (Sub-sampling Technique to Improve the Measurement Speed of White Light Scanning Interferometry)

  • 천인범;주기남
    • 한국정밀공학회지
    • /
    • 제31권11호
    • /
    • pp.999-1006
    • /
    • 2014
  • In this investigation, we explain the sub-sampling technique of white light scanning interferometry (WLSI) to improve the measurement speed. In addition to the previous work using Fourier domain analysis, several methods to extract the height from the correlogram of WLSI are described with the sub-sampling technique. Especially, Fourier-inverse Fourier transformation method adopting sub-sampling technique is proposed and the phase compensation technique is verified with simulation and experiments. The main advantage of sub-sampling is to speed up the measurements of WLSI but the precision such as repeatability is slightly poor. In case of measuring the sample which has high height step or difference, the proposed technique can be widely used to reduce the measurement time.