• Title/Summary/Keyword: Scandium oxide

Search Result 3, Processing Time 0.02 seconds

Dielectric relaxation properties in the lead scandium niobate

  • Yeon Jung Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.227-232
    • /
    • 2023
  • In this study, complex admittance as a function of temperature and frequency was measured to analyze the important relaxation properties of lead scandium niobate, which is physically important, although it is not an environmentally friendly electrical and electronic material, including lead. Lead scandium niobate was synthesized by heat treating the solid oxide, and the conductance, susceptance and capacitance were measured as a function of temperature and frequency from the temperature dependence of the RLC circuit. The relaxation characteristics of lead scandium niobate were found to be affected by contributions such as grain size, grain boundary characteristics, space charge, and dipole arrangement. As the temperature rises, the maximum admittance and susceptance increase in one direction, but the resonance frequency decreases below the transition temperature but increases after the phase transition.

Effects of Sintering Additives on the Microstructure Development in Silicon Oxynitride Ceramics

  • Kim, Joosun;Chen, I-Wei
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.224-228
    • /
    • 2000
  • Using a small amount of additives and amorphous Si₂N₂O powders, O-SiAlON ceramics have been hot-pressed and its microstructure and mechanical properties were investigated. Scandium oxide was demonstrated to be an effective densification additive for O-SiAlON. Amorphous Si₂N₂O was densified at relatively low temperatures and a microstructure with acicular grains was developed. Fine grains found in materials obtained from amorphous powders suggest that nucleation and crystallization of O-SiAlOH is relatively easy compared with the Si₃N₄-SiO₂reaction.

  • PDF

A Study on the Reaction Characteristics of Rare Earth Oxides with Lithium Oxide in LiCl Molten Salt (LiCl 용융염 중에서 희토류 산화물과 산화리튬의 반응특성에 관한 연구)

  • 오승철;박성빈;김상수;도재범;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.447-452
    • /
    • 2003
  • We had clarified the reactions of the rare earth oxides($RE_2O_3$) with lithium oxide produced in lithium reduction process of oxide fuels. Oxides of scandium, yttrium, praseodymium, neodymium, samarium, europium, gadolinium, ytterbium and lutetium reacted with lithium oxide in the higher concentration than the respective certain critical concentration of lithium oxide and formed complex oxides($LiREO_2$). The critical lithium oxide concentrations for the formation of complex oxides of scandium, yttrium, praseodymium, neodymium, samarium, europium, gadolinium, ytterbium and lutetium oxide were respectively 0.1 wt%, 1.9 wt%, 5.3 wt%, 5.0 wt%, 3.0 wt%, 3.9 wt% 2.9 wt%, 2.6 wt% and 0.3 wt%. Cerium and lanthanum oxide did not react with lithium oxide. These complex oxides obtained from experiments have limited solubility in lithium chloride at $650^{\circ}C$.

  • PDF