• 제목/요약/키워드: Scan motion

검색결과 159건 처리시간 0.023초

71세 남자에서 발생한 후방십자인대 대퇴골 부착부 견열 골절 - 1례 보고 - (Femoral Bony Avulsion Fracture of the Posterior Cruciate Ligament in a Seventy one Year Old Man - A Case Report -)

  • 이영현;안길영;남일현;문기혁;김기철;이채경;이상충
    • 대한관절경학회지
    • /
    • 제14권2호
    • /
    • pp.128-130
    • /
    • 2010
  • 후방십자인대의 대퇴골 견열 골절은 성인에서 매우 드문 손상이다. 과거 슬관절 손상으로 인해 관절 운동의 부분적 제한이 있던 71세 남자 환자가 약 2미터 높이에서 떨어지는 사고로 내원하였다. 촬영한 컴퓨터 단층촬영 및 자기공명영상검사에서 후방십자인대 대퇴골 부착부 견열 골절을 확인하였다. 관절경 시술 하에 두개의 강선으로 대퇴 내과를 통하여 고정하였다. 술 후 1년째 강선 제거술 및 2차 관절경 검사로 골절 부위의 유합을 확인 하였기에 이를 문헌고찰과 함께 보고하는 바이다.

  • PDF

Contrast-Enhanced MR Angiography of Supra-Aortic Arteries: Review of Current Techniques, Diagnostic Accuracy and Common Pitfalls in Steno-Occlusive Diseases

  • Lee, Jeong-Hyun;Kim, Jin-Hyoung;Kim, Hyun-Jeong;Park, Choong-Gon;Lee, Deok-Hee;Lee, Ho-Kyu;Kim, ang-Joon;Suh, Dae-Chul
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2003년도 제8차 학술대회 초록집
    • /
    • pp.97-97
    • /
    • 2003
  • Contrast-enhanced MR angiography (CE-MRA) gradually occupies its position as a primary evaluation tool forsteno-occlusive disease of supra-aortic cervical arteries. It has several advantages over time-of-flight (TOF) technique such as shorter imaging time, less saturation effect, and less flow- and motion-related artifacts. Diverse methods of k-space sampling, imaging sequences, and strategies for image acquisitiontiming have been introduced since its early clinical application. Especially, methods of k-space sampling and image acquisition timing are very important to achieve maximal arterial enhancement and suppress venous signal while maintaining large scan coverage and high spatial resolution. In addition, regardless of several advantages over TOF technique, it still has a tendency to overestimate the degree of stenosis in patients with carotid or vertebralartery disease. In this exhibit, we will overview the current techniques of CE-MRA with special attention to methods of k-space sampling and image acquisition timing. We will also discuss diagnostic accuracy of CE-MRA in patients with supra-aortic cervical artery stenosis and artifacts frequently misinterpreted as steno-occlusive lesion on CE-MRA.

  • PDF

한국인 척추 연구를 위한 형상 / 물성 정보 구축 (Geometry and Property Database for Korean Spine Research)

  • 이승복;이상호;한승호;곽대순
    • 한국콘텐츠학회논문지
    • /
    • 제11권10호
    • /
    • pp.488-493
    • /
    • 2011
  • 한국과학기술정보연구원과 가톨릭대학교 의과대학 가톨릭응용해부연구소에서는 척추 연구자들이 쉽게 사용할 수 있는 기초 자료를 구축하고 있다. 척추 형상 정보를 제공하기 위해 60-80대 기증시신 20여 표본을 활용하여 고해상도 척추 (whole spine) CT (pixel dimension : 0.4x mm, thickness: 0.6mm)를 촬영하고 이를 3차원 모델링 소프트웨어(Mimics, Ver.14, Materialise, Belgium)를 사용하여 3차원 형상 모델(shell model, STL format)로 구축하고, 목, 등, 허리 척추의 주요 부위를 계측하여 수치화 하였다. 시신기반 자료의 한계를 극복하기 위해 고령자 호발 질환을 중심으로 대상 환자를 선정하여 X-Ray, CT, BMD 자료를 구축하여 보강하고 있다. 물리적 성질 정보 구축은 기증시신 10여 표본을 활용하여 임상적, 물리적 골밀도를 측정하고, 목척추(cervical), 등척추(thoracic), 허리척추(lumbar) 부분의 굽힘-폄(flexion-extension), 가쪽 굽힘(lateral bending), 회전(torsion), 압축(body/disc compression) 시험을 수행하여 작용력과 굽힘량의 관계를 구축하고 있다. 구축된 물성 시험 결과는 형상 모델과 함께 제공되어 자료의 활용도를 높이고 있으며, 이를 이용하여 한국인 특성이 반영된 척추 관련 연구 및 제품 개발에 활용 될 수 있다.

MPEG-4 영상코덱에서 DCTQ module의 효율적인 구조 (An Efficient Architecture of Transform & Quantization Module in MPEG-4 Video Code)

  • 서기범;윤동원
    • 대한전자공학회논문지SD
    • /
    • 제40권11호
    • /
    • pp.29-36
    • /
    • 2003
  • 이 논문에서는, 2D-DCT, 양자화, AC/DC 예측블록, 스캔 변화, 역 양자화, 2D-IDCT로 이루어진 DCTQ 모듈의 효율적인 구조를 제안한다. 이 모듈은 1064 cycle 안에 매크로블록을 처리할 수 있도록 설계하였으며, MPEG-4 Video codec에서 30frame 의 CIF 영상에 대하여 동시에 encoder와 decoder를 처리할 수 있다. 단지 하나의 1D-DCT와 IDCT core 가 2-D DCT/IDCT 대신에 사용되며, 1 bit serial 분산산술방식을 이용하여 1-D DCT/IDCT를 구현하였다. 또한 파워소모를 줄이기 위해 움직임 예측에서 얻을 수 있는 SAE 값을 이용한 DCT와 양자화 모듈을 동작을 시키지 않는 방식을 제안하였다. 그리고 AC/DC 예측방법을 위한 메모리를 줄일 수 있도록 AC/DC 예측블록을 위한 메모리 구조 및 접근방법을 제안하였다. 그 결과, 하드웨어의 재 사용성이 놀아지고 파워소모가 작아짐을 알 수 있었다. 제안된 설계는 27㎒로 돌아가며, 실험결과 DCT와 IDCT 는 IEEE 기준을 만족함을 알 수 있었다.

소나 영상 획득을 위한 무인자율항법 시스템 구현 (Implementation of AUSV System for Sonar Image Acquisition)

  • 류재훈;류광렬
    • 한국정보통신학회논문지
    • /
    • 제20권11호
    • /
    • pp.2162-2166
    • /
    • 2016
  • 본 논문은 해저탐사에서 소나영상 촬영을 위한 무인자율항법(AUSV)시스템 구현에 관한 연구이다. 자율항법 시스템은 선체에 모션센서, DGPS에 의한 현재 경위도 좌표와 목표지 경위도 좌표의 차를 가지고 선체 추진체의 항로를 FFPID 알고리즘으로 제어한다. 실험결과, 목적지 좌표에 대한 제어좌표 오차는 전체 항법거리 1km 에서 6 m 이하로 우수하다. 또한 자율항법 모드에서의 소나영상 촬영 결과물은 유인선 촬영 결과물과의 차이는 12 화소 이하로 전체 영상 차이는 거의 식별할 수 없이 동일하다. 개발된 시스템은 유인선으로 촬영 불가능한 해저 지형에 대한 소나영상 촬영을 위한 새로운 방법으로 활용 가능하다.

유구골 체부 관상면 골절의 치료 (Treatment of Hamate Body Coronal Fracture)

  • 이상현;김누리;장재훈;안태영
    • Journal of Trauma and Injury
    • /
    • 제27권3호
    • /
    • pp.57-62
    • /
    • 2014
  • Purpose: A hamate body coronal fracture is well known as a very rare fracture in the carpal bones and is also hard to diagnose in initial stage due to the bone's architecture. We report our experience in treatment of such a fracture, and we present a review of the relevant literatures. Methods: Four patients who experienced hamate body coronal fractures from October 2006 to October 2013 were enrolled in this study. One patient also had an associated Capitate fracture, and two patients had associated dislocations of the $4^{th}$ metacarpal joint. We performed open reduction and mini-screw fixation on the four patients. In addition, a K-wire was fixed for the two patients with dislocations. Results: The average follow-up period was 24.5 months after surgery, and bone union was observed at the $8^{th}$ week after surgery. We confirmed that bone union had been completed for all the patients, and functional tests showed that joint motion was in the normal range without complications. Conclusion: When a patient has consistent pain on the ulnar side of the wrist, a hamate fracture should be suspected. Computer tomography is better than a simple X-ray scan for confirming the diagnosis of a hamate body coronal fracture. An open reduction and mini-screw fixation led to a good result.

환축추 회전 아탈구 환자에 대한 도수치료 효과 (Effect of Manual Therapy on a Patient With Atlantoaxial Rotatory Subluxation)

  • 전재국;양성화;신의주
    • 대한정형도수물리치료학회지
    • /
    • 제25권1호
    • /
    • pp.71-76
    • /
    • 2019
  • Background: An 8-year-old girl had severe neck pain and stiffness after trauma. CT scan showed atlantoaxial rotatory subluxation (AARS). She had conservative treatment because she did not have neurological symptoms and spinal basilar artery dysfunction. Conservative therapy was halter traction twice for 4 weeks. However, pain and stiffness persisted. She had been recommended to have surgery from her physician, but she received manual therapy for non-surgical procedures. Methods: The joint mobilization, muscle energy technique, motor control exercise, and deep neck flexor (DNF) endurance exercise were applied as manual therapy and 10 session for 2weeks. Results: Clinical outcomes were measured at initial baseline, after 2 weeks, and after 6weeks. Active range of motion was completely restored after 6weeks and numeric pain rating scale was completely reduced after 2 weeks. The strength of neck flexor muscle recovered to normal after 2 weeks, and the DNF endurance was improved to 25 seconds after 2 weeks and to 42 seconds after 6weeks. Motor control capacity recovered to 30 ㎜Hg after 2 weeks. Conclusions: This case report describes the immediate and short-term clinical outcomes for a patient presenting with symptoms of neck pain following AARS. Clinical rationale and patient preference aided the decision to incorporate manual therapy as a treatment for this patient. Manual therapy has shown a successful recovery in AARS patients, more research is needed to validate the inference of this case report.

In-House Developed Surface-Guided Repositioning and Monitoring System to Complement In-Room Patient Positioning System for Spine Radiosurgery

  • Kim, Kwang Hyeon;Lee, Haenghwa;Sohn, Moon-Jun;Mun, Chi-Woong
    • 한국의학물리학회지:의학물리
    • /
    • 제32권2호
    • /
    • pp.40-49
    • /
    • 2021
  • Purpose: This study aimed to develop a surface-guided radiosurgery system customized for a neurosurgery clinic that could be used as an auxiliary system for improving the accuracy, monitoring the movements of patients while performing hypofractionated radiosurgery, and minimizing the geometric misses. Methods: RGB-D cameras were installed in the treatment room and a monitoring system was constructed to perform a three-dimensional (3D) scan of the body surface of the patient and to express it as a point cloud. This could be used to confirm the exact position of the body of the patient and monitor their movements during radiosurgery. The image from the system was matched with the computed tomography (CT) image, and the positional accuracy was compared and analyzed in relation to the existing system to evaluate the accuracy of the setup. Results: The user interface was configured to register the patient and display the setup image to position the setup location by matching the 3D points on the body of the patient with the CT image. The error rate for the position difference was within 1-mm distance (min, -0.21 mm; max, 0.63 mm). Compared with the existing system, the differences were found to be as follows: x=0.08 mm, y=0.13 mm, and z=0.26 mm. Conclusions: We developed a surface-guided repositioning and monitoring system that can be customized and applied in a radiation surgery environment with an existing linear accelerator. It was confirmed that this system could be easily applied for accurate patient repositioning and inter-treatment motion monitoring.

딥러닝을 활용한 3차원 초음파 파노라마 영상 복원 (3D Ultrasound Panoramic Image Reconstruction using Deep Learning)

  • 이시열;김선호;이동언;박춘수;김민우
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권4호
    • /
    • pp.255-263
    • /
    • 2023
  • Clinical ultrasound (US) is a widely used imaging modality with various clinical applications. However, capturing a large field of view often requires specialized transducers which have limitations for specific clinical scenarios. Panoramic imaging offers an alternative approach by sequentially aligning image sections acquired from freehand sweeps using a standard transducer. To reconstruct a 3D volume from these 2D sections, an external device can be employed to track the transducer's motion accurately. However, the presence of optical or electrical interferences in a clinical setting often leads to incorrect measurements from such sensors. In this paper, we propose a deep learning (DL) framework that enables the prediction of scan trajectories using only US data, eliminating the need for an external tracking device. Our approach incorporates diverse data types, including correlation volume, optical flow, B-mode images, and rawer data (IQ data). We develop a DL network capable of effectively handling these data types and introduce an attention technique to emphasize crucial local areas for precise trajectory prediction. Through extensive experimentation, we demonstrate the superiority of our proposed method over other DL-based approaches in terms of long trajectory prediction performance. Our findings highlight the potential of employing DL techniques for trajectory estimation in clinical ultrasound, offering a promising alternative for panoramic imaging.

The Value of Computed Tomography Scan in Three-dimensional Planning and Intraoperative Navigation in Primary Total Hip Arthroplasty

  • Fabio Mancino;Andreas Fontalis;Ahmed Magan;Ricci Plastow;Fares S. Haddad
    • Hip & pelvis
    • /
    • 제36권1호
    • /
    • pp.26-36
    • /
    • 2024
  • Total hip arthroplasty (THA) is a frequently performed procedure; the objective is restoration of native hip biomechanics and achieving functional range of motion (ROM) through precise positioning of the prosthetic components. Advanced three-dimensional (3D) imaging and computed tomography (CT)-based navigation are valuable tools in both the preoperative planning and intraoperative execution. The aim of this study is to provide a thorough overview on the applications of CT scans in both the preoperative and intraoperative settings of primary THA. Preoperative planning using CT-based 3D imaging enables greater accuracy in prediction of implant sizes, leading to enhancement of surgical workflow with optimization of implant inventory. Surgeons can perform a more thorough assessment of posterior and anterior acetabular wall coverage, acetabular osteophytes, anatomical landmarks, and thus achieve more functional implant positioning. Intraoperative CT-based navigation can facilitate precise execution of the preoperative plan, to attain optimal positioning of the prosthetic components to avoid impingement. Medial reaming can be minimized preserving native bone stock, which can enable restoration of femoral, acetabular, and combined offsets. In addition, it is associated with greater accuracy in leg length adjustment, a critical factor in patients' postoperative satisfaction. Despite the higher costs and radiation exposure, which currently limits its widespread adoption, it offers many benefits, and the increasing interest in robotic surgery has facilitated its integration into routine practice. Conducting additional research on ultra-low-dose CT scans and examining the potential for translation of 3D imaging into improved clinical outcomes will be necessary to warrant its expanded application.