• Title/Summary/Keyword: Scan mirror

Search Result 46, Processing Time 0.022 seconds

DEVELOPMENT OF KASI SOLAR IMAGING SPECTROGRAPH (한국천문연구원 태양영상분광기 개발)

  • Kim, Y.H.;Moon, Y.J.;Cho, K.S.;Park, Y.D.;Choi, S.H.;Jang, B.H.;Kim, S.
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.51-59
    • /
    • 2006
  • We have successfully developed the KASI (Korea Astronomy and Space Science Institute) Solar Imaging Spectrograph (KSIS), which has been originally upgraded from the KASI solar spectrograph that was able to record solar spectra for a given slit region and to inspect the response function of narrow band filters. A prototype KSIS was developed in 2004 by using a scanning mirror in front of the spectrograph slit and a SBIG ST-8XE CCD camera. Its main disadvantage is that it took a long time (about 13 minutes) to scan a whole active region. In this work, we have upgraded the KSIS by installing a much faster Dalsa 1M15 CCD camera, which gives a data acquisition time of about 2.5 minutes. The software for KSIS was also improved for the new CCD camera on the basis of component-based development method. We have successfully made a test observation for a simple and small active region (AR10910) using the improved KSIS system. Our observations show that H-alpha images for several wavelengths have typical features in a sunspot as well as a H-alpha centerline image is quite similar to a BBSO H-alpha image, demonstrating the capability of the KSIS system.

Is Skeletonized Internal Mammary Artery Harvesting better than Pedicled Harvesting in Respect of the Sternal Blood Flow\ulcorner: An Estimation Using Bone Scan (내유동맥의 골격화 채취는 흉골로의 혈류 감소 측면에서 과연 유리한가 \ulcorner: 골주사를 이용한 평가)

  • 손국희;김영삼;김정택;윤용한;김광호;최원식;백완기
    • Journal of Chest Surgery
    • /
    • v.37 no.6
    • /
    • pp.511-516
    • /
    • 2004
  • Background: One of the theoretical advantages of skeletonized internal mammary artery harvesting in coronary artery bypass surgery is to minimize the interruption of the sternal blood flow inevitably accompanied by internal mammary harvesting. A study using bone scan is designed to determine the effects of internal mammary artery harvesting technique on the sternal blood flow. Material and Method: From April 2002 to March 2003, 27 patients out of 48 patients who underwent the isolated coronary bypass surgery were enrolled into the study. The enrolled patients underwent bone scan in the preoperative period and postoperative period respectively. Bilateral internal mammary artery was used in 8 patients (BIMA group) and single left internal mammary artery in 19 patients (LIMA group). The patients in LIMA group were divided into two groups: LlMA_skel group, in whom left internal mammary artery was harvested in skeletonized fashion (n=12), and LlMA_ped group, in whom left internal mammary artery was harvested in pedicled fashion (n=7). After the bone scan, the region of interest (ROI) was created on the left of the sternum and the mirror image with the same pixel numbers was placed on the right half of the sternum. The mean counts per pixel on the left side of the sternum was compared with those on the right side and expressed as left to right ratio (L/R ratio). Result: In LIMA group, the L/R ratio decreased from 94.6$\pm$4.1% to 87.9$\pm$6.9% (p=0.003) after the operation as compared to BIMA group, in which no change of the L/R ratio was observed. The changed of the L/R ratio in LlMA_skel group and LlMA_ped group were from 95.3$\pm$4.2% to 88.3$\pm$7.7% and from 93.4$\pm$3.9% to 87.4$\pm$5.8% respectively. The % changes in L/R ratio were -7.44 $\pm$7.08 in LIMA_skel group and -6.17$\pm$9.08 in LiMA_ped group, which did not reach the statistical difference. Conclusion: Ipsilateral sternal blood flow is interrupted by internal mammary artery harvesting as evidenced by the decrease in L/R ratio after left internal mammary artery harvesting irrespective of the harvesting techniques. Skeletonized harvesting did not show superiority in respect to sternal blood flow as compared to pedicled harvesting.

Four-Channel Differential CMOS Optical Transimpedance Amplifier Arrays for Panoramic Scan LADAR Systems (파노라믹 스캔 라이다 시스템용 4-채널 차동 CMOS 광트랜스 임피던스 증폭기 어레이)

  • Kim, Sang Gyun;Jung, Seung Hwan;Kim, Seung Hoon;Ying, Xiao;Choi, Hanbyul;Hong, Chaerin;Lee, Kyungmin;Eo, Yun Seong;Park, Sung Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.82-90
    • /
    • 2014
  • In this paper, a couple of 4-channel differential transimpedance amplifier arrays are realized in a standard 0.18um CMOS technology for the applications of linear LADAR(laser detection and ranging) systems. Each array targets 1.25-Gb/s operations, where the current-mode chip consists of current-mirror input stage, a single-to-differential amplifier, and an output buffer. The input stage exploits the local feedback current-mirror configuration for low input resistance and low noise characteristics. Measurements demonstrate that each channel achieves $69-dB{\Omega}$ transimpedance gain, 2.2-GHz bandwidth, 21.5-pA/sqrt(Hz) average noise current spectral density (corresponding to the optical sensitivity of -20.5-dBm), and the 4-channel total power dissipation of 147.6-mW from a single 1.8-V supply. The measured eye-diagrams confirms wide and clear eye-openings for 1.25-Gb/s operations. Meanwhile, the voltage-mode chip consists of inverter input stage for low noise characteristics, a single-to-differential amplifier, and an output buffer. Test chips reveal that each channel achieves $73-dB{\Omega}$ transimpedance gain, 1.1-GHz bandwidth, 13.2-pA/sqrt(Hz) average noise current spectral density (corresponding to the optical sensitivity of -22.8-dBm), and the 4-channel total power dissipation of 138.4-mW from a single 1.8-V supply. The measured eye-diagrams confirms wide and clear eye-openings for 1.25-Gb/s operations.

Optical System Design for Real-Time 3-Dimension Ophthalmoscope (실시간 3차원 검안경의 광학설계)

  • Lee, Soak-Hee;Yang, Yun-Sik;Choe, Oh-Mok;Sim, Sang-Hyun;Doo, Ha-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.1
    • /
    • pp.35-39
    • /
    • 2003
  • The display technology on the retina is the key role in inspecting the condition of the patients. 2-dimensional retina image is widely used in the eye examination as of today. Recently, 3-dimensional retina image ones have been introduced to this area, but the quality of the image is not fully satisfied to the operator. For the purpose of developing 3-D retina imaging instrument, the optimization of a 3-D retina imaging system using Code-V tool was investigated in this thesis. He-Ne laser having the wavelength 632.8 nm was used to make a power source to detect the retina. Several lenses and mirrors installed on sledge which were developed to perform focus control on 3-D device were designed to make a beam focusing and direct line. Polygon scanner having 24 mirror facets and galvanometer making tilting movement were utilized to make a 2-D laser plane. Also, design of eye ball had been fulfilled to see the focus of the 2-D plane. Reflected ray from retina detected on the sensor array with the same path. All cognitive components were optimized for aberration correction in order to focus on retina. Results of optimization were compared to those of initial designed optics system. On the basis of above results, the result of third aberration has been corrected to stable values to the optical system. MTF evaluating the resolution of an image has been closely correlated to the diffraction limit and PSF indicating the strength distribution of an image has shown the SR value as 0.9998 having high performance. The possibility of new and powerful 3-D retina image instrument was verified by simulating each component of the instrument by Code-V.

  • PDF

Direct Bonding of SillSiO2/Si3N4llSi Wafer Fairs with a Fast Linear Annealing (선형가열기를 이용한 SillSiO2/Si3N4llSi 이종기판쌍의 직접접합)

  • 이상현;이상돈;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.301-307
    • /
    • 2002
  • Direct bonded SOI wafer pairs with $Si ll SiO_2/Si_3N_4 ll Si$ the heterogeneous insulating layers of SiO$_2$-Si$_3$N$_4$are able to apply to the micropumps and MEMS applications. Direct bonding should be executed at low temperature to avoid the warpage of the wafer pairs and inter-diffusion of materials at the interface. 10 cm diameter 2000 ${\AA}-SiO_2/Si(100}$ and 560 $\AA$- ${\AA}-Si_3N_4/Si(100}$ wafers were prepared, and wet cleaned to activate the surface as hydrophilic and hydrophobic states, respectively. Cleaned wafers were pre- mated with facing the mirror planes by a specially designed aligner in class-100 clean room immediately. We employed a heat treatment equipment so called fast linear annealing(FLA) with a halogen lamp to enhance the bonding of pre mated wafers We kept the scan velocity of 0.08 mm/sec, which implied bonding process time of 125 sec/wafer pairs, by varying the heat input at the range of 320~550 W. We measured the bonding area by using the infrared camera and the bonding strength by the razor blade clack opening method, respective1y. It was confirmed that the bonding area was between 80% and to 95% as FLA heat input increased. The bonding strength became the equal of $1000^{\circ}C$ heat treated $Si ll SiO_2/Si_3N_4 ll Si$ pair by an electric furnace. Bonding strength increased to 2500 mJ/$\textrm{m}^2$as heat input increased, which is identical value of annealing at $1000^{\circ}C$-2 hr with an electric furnace. Our results implies that we obtained the enough bonding strength using the FLA, in less process time of 125 seconds and at lowed annealing temperature of $400^{\circ}C$, comparing with the conventional electric furnace annealing.

A Study of Roughness Measurement of Rock Discontinuities Using a Confocal Laser Scanning Microscope (콘포컬 레이저 현미경을 이용한 불연속면의 거칠기 측정 연구)

  • Byung Gon Chae;Jae Yong Song;Gyo Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.405-419
    • /
    • 2002
  • Fracture roughness of rock specimens is observed by a new confocal laser scanning microscope (CLSM; Olympus OLS1100). The wave length of laser is 488 nm, and the laser scanning is managed by a light polarization method using two galvano-meter scanner mirrors. The function of laser reflection auto-focusing enables us to measure line data fast and precisely. The system improves resolution in the light axis (namely z) direction because of the confocal optics. Using the CLSM, it is Possible to measure a specimen of the size up to $10{\;}{\times}{\;}10{\;}cm$ which is fixed on a specially designed stage. A sampling is managed in a spacing $2.5{\;}\mu\textrm{m}$ along x and y directions. The highest measurement resolution of z direction is $10{\;}\mu\textrm{m}$, which is more accurate than other methods. Core specimens of coarse and fine grained granite are provided. Fractures are artificially maneuvered by a Brazilian test method. Measurements are performed along three scan lines on each fracture surface. The measured data are represented as 2-D and 3-D digital images showing detailed features of roughness. Line profiles of the coarse granites represent more frequent change of undulation than those of the fine granite. Spectral analyses by the fast Fourier transform (FFT) are performed to characterize the roughness data quantitatively and to identify influential frequency of roughness. The FFT results suggest that a specimen loaded by large and low frequency energy tends to have high values of undulation change and large wave length of fracture roughness.