• Title/Summary/Keyword: Scan Design

Search Result 508, Processing Time 0.034 seconds

Design of a Color Machine Vision System for the Automatic Sorting of Soybeans (대두의 자동 선별을 위한 컬러 기계시각장치의 설계)

  • Kim, Tae-Ho;Mun, Chang-Su;Park, Su-U;Jeong, Won-Gyo;Do, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.231-234
    • /
    • 2003
  • This paper describes the structure, operation, image processing, and decision making techniques of a color machine vision system designed for the automatic sorting of soybeans. The system consists of feeder, conveyor belt, line-scan camera, lights. ejector, and a PC Unlike manufactured goods, agricultural products including soybeans have quite uneven features. The criteria for sorting good and bad beans also vary depending on inspectors. We tackle these problem by letting the system learn the inspecting parameters from good samples selected manually by a machine user before running the system for sorting. Real-time processing has another importance In the design. Four parallel DSPs are employed to increase the processing speed. When the designed system was tested with real soybeans and the result was successful.

  • PDF

A Study on the Impact Behavior and Damage of Laminated Composite Plates Subjected to the Low-Velocity Impact (저속 충격을 받는 적층판의 충격거동과 손상에 관한 연구)

  • Ahn, Kook-Chan;Kim, Kyu-Su;Park, Seung-Bum;Hwang, Byung-Sun
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.6-10
    • /
    • 2002
  • This paper presents the impact behavior and damage of laminated composite plates subjected to low-velocity impact. For this purpose, a pendulum impact test for impact behavior and C-scan for impact damage are done. Test materials are carbon/epoxy laminated composite plates and stacking sequences $[0/90_4\;[0/45_2/-45]_s,\;[0/45/-45/90]_s$ and [0/26/51/77/-77/-51/-26/0].

A Functional Design of Programmable Logic Controller Based on Parallel Architecture (병렬 구조에 의한 가변 논리제어장치의 기능적 설계)

  • 이정훈;신현식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.8
    • /
    • pp.836-844
    • /
    • 1991
  • PLC(programmable logic controller) system is widely used for the control of factory. PLC system receives ladder diagram which is drawn by the user to implement hardware logic, converts the ladder diagram into sequence program which is executable in the PLC system, and executes the sequence program indefinitely unless user breaks. The sequence program processes the data of on/off signal, and endures 1 scan delay and missing of pulse-type signal shorter than a scan time. So, data dependency doesn't exist. By applying theis characteristics to multiprocessor architecture, we design parellel PLC functionally and evaluate performance upgrade. Parallel PLC consists of central processing module, N general processing unit, and a shared memory by master-slave type. Each module executes allocated sequence program by the control of central processing module. We can expect performance upgrade by parallel processing, and reliability by relocation of sequence program when error occurs in processing module.

  • PDF

An On-Chip Test Clock Control Scheme for Circuit Aging Monitoring

  • Yi, Hyunbean
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.71-78
    • /
    • 2013
  • In highly reliable and durable systems, failures due to aging might result in catastrophes. Aging monitoring techniques to prevent catastrophes by predicting such a failure are required. Aging can be monitored by performing a delay test at faster clocks than functional clock in field and checking the current delay state from the test clock frequencies at which the delay test is passed or failed. In this paper, we focus on test clock control scheme for a system-on-chip (SoC) with multiple clock domains. We describe limitations of existing at-speed test clock control methods and present an on-chip faster-than-at-speed test clock control scheme for intra/inter-clock domain test. Experimental results show our simulation results and area analysis. With a simple control scheme, with low area overhead, and without any modification of scan architecture, the proposed method enables faster-than-at-speed test of SoCs with multiple clock domains.

Design of S-Band Phased Array Antenna with High Isolation Using Broadside Coupled Split Ring Resonator

  • Hwang, Sungyoun;Lee, Bomson;Kim, Dong Hwan;Park, Joon Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.108-116
    • /
    • 2018
  • In this paper, a method of designing a Vivaldi type phased array antenna (PAA) which operates at S-band (2.8-3.3 GHz) is presented. The presented antenna uses broadside coupled split ring resonators (BC-SRRs) for high isolation, wide field of view, and good active S-parameter characteristics. As an example, we design a $1{\times}8$ array antenna with various BC-SRR structures using theory and EM simulations. The antenna is fabricated and measured to verify the design. With the BC-SRR implemented between the two radiating elements, the isolation is shown to be enhanced by 6 dB, up to 23 dB. The scan angle is shown to be within ${\pm}53^{\circ}$ based on a -10 dB active reflection coefficient. The operation of the scan angle is possible within ${\pm}60^{\circ}$ with a little larger reflection coefficient (-7 dB to -8 dB). The proposed design with BC-SRRs is expected to be useful for PAA applications.

2D Lower Body Flat Pattern of the Women in Their Twenties Using 3D Scan Data (3차원 인체 형상을 이용한 20대 여성의 하반신 전개패턴에 관한 연구)

  • Yoon, Mi-Kyung;Nam, Yun-Ja;Choi, Kyeng-Mi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.5 s.164
    • /
    • pp.692-704
    • /
    • 2007
  • Recently, Basic patterns with excellent body fitness and automation availability are required to be developed in order to automate the patterns of women's clothes. In this study, this reference points, reference lines and segments were fixed onto 3D scan data for the lower body the women in their twenties, they were directly spread out to be 2D flat pattern to facilitate development into the design of slacks adhered closely to the human body such as special and highly-functional clothes, and then slacks 2D pattern was developed for the purpose of seeking scientific approach to the development into basic form slacks and 3d emotional pattern. For conversion of 3D pattern into 2D flat pattern, reference points and segments were created by using Rapid Form of 3D shape analysis software, and triangle mesh of the body surface of the created shape was developed with Auto CAD 2005. The correspondence between slacks and human body was examined by the fixation of major reference lines. Specially, the wearing characteristics of slacks were considered by the fixation of side lines in consideration of posture. As a result of using the way of development to constantly maintain the length while 3D triangle mesh is converted into 2D flat mesh, the shape was shown to be excellently reproduced, and the area of flat pattern was increased compared to the shape of parting plane. Also, the sunk-in curve like the brief line of front crotch length needed a cutting line when it was closely adhered, when mesh was overlapped, and the pattern area was smaller compared to the actual shape.

Nondestructive Inspection of Steel Structures Using Phased Array Ultrasonic Technique (위상배열 초음파기법을 이용한 강구조물의 비파괴 탐상)

  • Shin, Hyeon-Jae;Song, Sung-Jin;Jang, You-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.538-544
    • /
    • 2000
  • A phased array ultrasonic nondestructive inspection system is being developed to obtain images of the interior of steel structures by modifying a medical ultrasound imaging system. The medical system consists of 64 individual transceiver channels that can drive 128 array elements. Several modifications of the system were required mainly due to the change of sound speed. It was necessary to fabricate array transducers for steel structure and to obtain A-scan signal that is necessary for the nondestructive testing. Boundary diffraction wave model was used for the prediction of radiation beam field from array transducers, which provided guidelines to design array transducers. And a RF data acquisition board was fabricated for the A-scan signal acquisition along a selected un line within an image. For the proper beam forming in the transmission and reception for steel structure, delay time was controlled. To demonstrate the performance of the developed system and fabricated transducers, images of artificial specimens and A-scan signals for selected scan lines were obtained in a real time fashion.

  • PDF

Belt Pattern Making for Hip-hugger garment using 3D Body Scan Data (3차원 인체 스캔 데이터를 활용한 Hip-hugger 의류용 벨트 패턴 설계)

  • Park, Soon-Jee;Choi, Sin-Ae
    • Fashion & Textile Research Journal
    • /
    • v.10 no.5
    • /
    • pp.652-659
    • /
    • 2008
  • This study was designed to testify the possibility and devise the method to manipulate the 3D body scan data to produce rounded-belt pattern adaptable to hip-type variation of women in their 20's. The results of this research were as follows : Firstly, based on drop-value distribution of hip and waist girth, 151 subjects were classified into three hip-types; Type 1 (15.23%) was 'cylinder type', showing lowest drop-value, Type 2 (69.54%) was 'average type' and Type3 (15.23%) was 'hourglass type' showing highest drop-value. Secondly, using CAD program, design lines for round shape belt were set on the surface of 3D scan data of representative subject of each type. And divided 3D surfaces were flattened onto the plane by the internal tools of CAD program. The measure, 'lifting value of round belt pattern', implying the level of curve ratio of pattern was higher in back than front. This result might be linked to the fact that the hip part is more protruded than the abdomen part. And the measures also showed highest values in Type 3(hourglass type) and lowest in Type 1(cylinder type), meaning that the pattern of Type 3 showed more rounded shape than that of Type 1. This finding implied that round belt for body type having high drop-value should be shaped more curved. Thirdly, difference ratios of outline length and area between 3D curves(body surface) and 2D plane(pattern) were 4.5% and 1.3%, respectively. This result demonstrated and solidified the feasibility of designing digital garment pattern from 3D body scan data.