• Title/Summary/Keyword: Scan&printing

Search Result 78, Processing Time 0.029 seconds

Centralized Educational Certificate Authentication System Using QR Cod Tag (QR코드를 이용한 통합 교육 자격 입증 시스템)

  • Abdurhman, Hamdi;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.271-274
    • /
    • 2017
  • An educational institution issued a degree certificate to those students who have successfully completed all studies included in different levels of the degree program. The degree certificate presented by the University is of major significance in the person's life but the fabrication and circulation of fake certificates is inexpensive because a paper document can easily be forged with the availability of advance printing and copying technologies. So, there is a need to adopt a centralized authentication process that can verify and ensure the authenticity of a document. In order to prevent the spread of fake degree certificates a method is proposed where the integrity of the contents with in the certificate can be verified with the use of and Smart Phone Application. A Quick Response (QR) Code will contain a digital signature over the data such as degree holder's name, major program, Grade Point Average (GPA) obtained etc. Which will be signed by university authorities after the registration in central system and deployed in university. In order to verify the digital signature a person need to use a specific smart phone application which will scan and authenticate the certificate without gaining access to a user's security credentials such as password.

  • PDF

Study on the optimization of additive manufacturing process parameters to fabricate high density STS316L alloy and its tensile properties (고밀도 STS316L 합금 적층 성형체의 제조공정 최적화 및 인장 특성 연구)

  • Yeonghwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.288-293
    • /
    • 2023
  • To optimize the process parameters of laser powder bed fusion process to fabricate the high density STS316L alloy, the effect of laser power, scanning speed and hatching distance on the relative density was studied. Tensile properties of additively manufactured STS316L alloy using optimized parameters was also evaluated according to the build direction. As a result of additive manufacturing process under the energy density of 55.6 J/mm3, 83.3 J/mm3 and 111.1 J/mm3, high density STS316L specimens was suitably fabricated when the energy density, power and scan speed were 83.3 J/mm3, 225 W and 1000 mm/s, respectively. The yield strength, ultimate tensile strength, and elongation of STS316L specimens in direction perpendicular to the build direction, show the most competitive values. Anisotropic shape of the pores and the lack of fusion defects probably caused strain localization which result in deterioration of tensile properties.

Making Aids of Magnetic Resonacnce Image Susing 3D Printing Technology (3D 프린트를 활용한 자기공명영상검사 보조기구 제작)

  • Choi, Woo jeon;Ye, Soo young;Kim, Dong hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.403-409
    • /
    • 2016
  • MRI scan is a useful method in the diagnosis of musculoskeletal excellent contrast of the organization. Depending on the patient's musculoskeletal examinations state the type of aids provided the aid is used there is also challenging as well as the costs do not vary. This study was produced by the use of 3D printing technology, an MRI aids. Aids in the production process, then through 3D modeling and then convert stl files using (3D MAX.2014, Fusion360) slicing programs (Cubicreater 2.1ver., Cura 15.4ver) converted to G-code printed on the FDM scheme (Cubicon Style, output was MICRO MAKE). Output is, but in the FDM to evaluate the SNR on the MRI images were compared to the test is the case before use, and then to produce a Water Phantom case of a PLA, ABS, a TPU thickness 3mm, using aids before, It was evaluated in a clinical image after qualitatively. Obtaining an image of SNR Warter Phantom appeared to have been evaluated as T1 NON $123.778{\pm}28.492$, PLA $123.522{\pm}28.373$, ABS $124.461{\pm}25.716$, TPU $124.843{\pm}27.272$. T2 NON $127.421{\pm}26.949$, was rated as PLA $124.501{\pm}27.768$, ABS $128.663{\pm}26.549$, TPU $130.171{\pm}25.998$. The results did not show statistically significant differences. The use of assistive devices before and after images Clinical evaluation method palliative $3.20{\pm}0.88$, $3.95{\pm}0.76$ after using the aids used to aid improved the quality of the image. Production of the auxiliary mechanism using a future 3D printing is expected are thought to be used clinically, it can be an aid making safe and comfortable than the inspection of the patient is an alternative to improve the problems of the aids used in the conventional do.

Correlation between Microstructure and Mechanical Properties of the Additive Manufactured H13 Tool Steel (적층 제조된 H13 공구강의 미세조직과 기계적 특성간의 상관관계)

  • An, Woojin;Park, Junhyeok;Lee, Jungsub;Choe, Jungho;Jung, Im Doo;Yu, Ji-Hun;Kim, Sangshik;Sung, Hyokyung
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.663-670
    • /
    • 2018
  • H13 tool steels are widely used as metallic mold materials due to their high hardness and thermal stability. Recently, many studies are undertaken to satisfy the demands for manufacturing the complex shape of the mold using a 3D printing technique. It is reported that the mechanical properties of 3D printed materials are lower than those of commercial forged alloys owing to micropores. In this study, we investigate the effect of microstructures and defects on mechanical properties in the 3D printed H13 tool steels. H13 tool steel is fabricated using a selective laser melting(SLM) process with a scan speed of 200 mm/s and a layer thickness of $25{\mu}m$. Microstructures are observed and porosities are measured by optical and scanning electron microscopy in the X-, Y-, and Z-directions with various the build heights. Tiny keyhole type pores are observed with a porosity of 0.4 %, which shows the lowest porosity in the center region. The measured Vickers hardness is around 550 HV and the yield and tensile strength are 1400 and 1700 MPa, respectively. The tensile properties are predicted using two empirical equations through the measured values of the Vickers hardness. The prediction of tensile strength has high accuracy with the experimental data of the 3D printed H13 tool steel. The effects of porosities and unmelted powders on mechanical properties are also elucidated by the metallic fractography analysis to understand tensile and fracture behavior.

Fabrication of complete denture using digital technology in patient with mandibular deviation: a case report (하악 편위 환자에서 디지털 방식을 이용한 총의치 제작 증례)

  • Lee, Eunsu;Park, Juyoung;Park, Chan;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sangwon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.1
    • /
    • pp.34-41
    • /
    • 2022
  • Recently, digital technology and computer-aided design/computer-aided manufacturing (CAD/CAM) environment have changed the clinician treatment method in the fabrication of dentures. The denture manufacturing method with CAD/CAM technology simplifies the treatment and laboratory process to reduce the occurrence of errors and provides clinical efficiency and convenience. In this case, complete dentures were fabricated using stereolithography (SLA)-based 3D printing in patient with mandibular deviation. Recording base were produced in a digital model obtained with an intraoral scanner, and after recording a jaw relation in the occlusal rim, a definitive impression was obtained with polyvinyl siloxane impression material. In addition, facial scan data with occlusal rim was obtained so that it can be used as a reference in determination of the occlusal plane and in arrangement of artificial teeth during laboratory work. Artificial teeth were arranged through a CAD program, and a gingival festooning was performed. The definitive dentures were printed by SLA-based 3D printer using a Food and Drug Administration (FDA)-approved liquid photocurable resin. The denture showed adequate retention, support and stability, and results were satisfied functionally and aesthetically.

A Study on the Fabrication of bone Model X-ray Phantom Using CT Data and 3D Printing Technology (CT 데이터와 3D 프린팅 기술을 이용한 뼈 모형 X선 팬텀 제작에 관한 연구)

  • Yun, Myeong Seong;Han, Dong-Kyoon;Kim, Yeon-Min;Yoon, Joon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.879-886
    • /
    • 2018
  • A 3-dimensional (D) printer is a device capable of outputting a three-dimensional solid object based on data modeled in a computer. These features are utilized in the bone model X - ray phantom production etc using CT data by fusing with the radiation science field. A bone model phantom was made using data obtained by CT scan of an existing Pelvis phantom, using PLA, Wood, XT-CF20, Glow fill, Steel filaments which are materials of Fused Filament Fabrication (FFF) 3D printer.Measure Hounsfield Unit (HU) with images obtained by CT scan of the existing Pelvis phantom and five material phantoms made with 3D printer under the same conditions,SI and SNR were measured using a diagnostic X-ray generator, and each phantom was compared and analyzed.As a result, the X - ray phantom in the X - ray examination condition of the limb was found to be most suitable for the glow fill filament.The characteristics of the filament can be known to the base of this research and the practicality of X - ray phantom fabrication was confirmed.

An Authentic Certification System of a Printed Color QR Code based on Convolutional Neural Network (인쇄된 컬러 QR코드의 합성곱 신경망 알고리즘에 의한 진위 판정 시스템)

  • Choi, Do-young;Kim, Jin-soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.3
    • /
    • pp.21-30
    • /
    • 2020
  • With the widespread of smartphones, the Quick response (QR) code became one of the most popular codes. In this paper, a new type of QR code is proposed to increase the storage capacities and also to contain private information by changing the colors and the shape of patterns in the codes. Then, for a variety of applications of the printed QR codes, this paper proposes an efficient authentic certification system, which is built on an conventional CNN (Convolutional neural network) architecture - VGGNet and classifies authentic or counterfeit with smartphones, easily. For authentic codes, the proposed system extracts the embedded private information. Through practical experiments with a printed QR code, it is shown that the proposed system can classify authentic or counterfeit code, perfectly, and also, are useful for extracting private information.

The accuracy of a 3D printing surgical guide determined by CBCT and model analysis

  • Ma, Boyoung;Park, Taeseok;Chun, Inkon;Yun, Kwidug
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.279-285
    • /
    • 2018
  • PURPOSE. The aim of this clinical study was to assess the accuracy of the implants placed using a universal digital surgical guide. MATERIALS AND METHODS. Among 17 patients, 28 posterior implants were included in this study. The digital image of the soft tissue acquired from cast scan and hard tissue from CBCT have been superimposed and planned the location, length, diameter of the implant fixture. Then digital surgical guides were created using 3D printer. Each of angle deviations, coronal, apical, depth deviations of planned and actually placed implants were calculated using CBCT scans and casts. To compare implant positioning errors by CBCT scans and plaster casts, data were analyzed with independent samples t-test. RESULTS. The results of the implant positioning errors calculated by CBCT and casts were as follows. The means for CBCT analyses were: angle deviation: $4.74{\pm}2.06^{\circ}$, coronal deviation: $1.37{\pm}0.80mm$, and apical deviation: $1.77{\pm}0.86mm$. The means for cast analyses were: angle deviation: $2.43{\pm}1.13^{\circ}$, coronal deviation: $0.82{\pm}0.44mm$, apical deviation: $1.19{\pm}0.46mm$, and depth deviation: $0.03{\pm}0.65mm$. There were statistically significant differences between the deviations of CBCT scans and cast. CONCLUSION. The model analysis showed lower deviation value comparing the CBCT analysis. The angle and length deviation value of the universal digital guide stent were accepted clinically.

Shape Design Method of Mold Brassiere Cup for Small-breasted Women in their Twenties (20대 빈약 유방 여성용 몰드 브래지어 컵의 형태 설계 방법)

  • Lee, Hyun-Young
    • Fashion & Textile Research Journal
    • /
    • v.17 no.6
    • /
    • pp.988-995
    • /
    • 2015
  • Gaps between the upper edges of brassiere mold cups and the breasts are one of the most serious issues in realizing comfort wearing of commercial brassieres for small-breasted women. The surplus ease amounts causing the fit problem were measured from 3D wearing images of the small-breasted women's brassieres. The effect after the removing the surplus ease amounts from the upper edge of mold cup was approved by subjective wearing evaluation. Since the volume distribution of mold cup can also affect the wearing sensation of brassiere, the subjective wearing sensation was compared for two brassieres of different volume distributions, VL, of which volume was concentrated at the lower cup, and VC, which has the thickest part at the nipple. As the results, the suitable sensation for cup volume and the natural wearing silhouette could be accomplished by removing the surplus ease amounts from the upper edge of mold cup to reduce the gaps between brassieres and the breasts, which could be accomplished through an approach reducing the volume near the upper edge of mold brassiere cup and making the volume concentrated at the lower cup. These works provide a useful information on the design of the brassiere mold cups for small-breasted women. Moreover, modeling methods of 3D scan data and 3D printing technique for making more accurate mold cases used in this research can be helpful to develop and evaluate clothing products in future.

Analysis of Variations in Deformations of Additively Manufactured SUS316L Specimen with respect to Process Parameters and Powder Reuse (금속 적층제조 방식을 이용한 SUS316L 시편의 공정 파라미터 및 금속 분말 재사용에 따른 변형량 변화 분석)

  • Kim, Min Soo;Kim, Ji-Yoon;Park, Eun Gyo;Kim, Tae Min;Cho, Jin Yoen;Kim, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.223-231
    • /
    • 2022
  • Residual stress that can occur during the metal additive manufacturing process is an important factor that must be properly controlled for the precise production of metal parts through 3D printing. Therefore, in this study, the factors affecting these residual stresses were investigated using an experimental method. For the experiment, a specimen was manufactured through an additive manufacturing process, and the amount of deformation was measured by cutting it. By appropriately calibrating the measured data using methods such as curve fitting, it was possible to quantitatively analyze the effect of process parameters and metal powder reuse on deformation due to residual stress. From this result, it was confirmed that the factor that has the greatest influence on the magnitude of deformation due to residual stress in the metal additive manufacturing process is whether the metal powder is reused. In addition, it was confirmed that process parameters such as laser pattern and laser scan angle can also affect the deformation.