• Title/Summary/Keyword: Scaling Parameter

Search Result 145, Processing Time 0.022 seconds

Characteristics of NOx Emission in a Swirl Flow in Nonpremixed Turbulent Hydrogen Jet with Coaxial Air (수소 난류 확산화염에서의 선회류에 의한 배기배출물 특성)

  • Oh, Jeong-Seog;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.275-282
    • /
    • 2010
  • The effect of swirl flow on NOx in a nonpremixed turbulent hydrogen jet with coaxial air was studied. The swirl vane angle was varied from $30^{\circ}$ to $90^{\circ}$. The fuel jet air velocity and coaxial air velocity were varied in an attached flame region as $u_F=85{\sim}160m/s$ and $u_A=7{\sim}14m/s$. The objective of the current study was to analyze the characteristics of nitrous oxide emission in a swirl flow and to propose a new parameter for EINOx scaling. The experimental results show that EINOx decreases with the swirl vane angle and increased with flame length. Further, EINOx scaling factors can be determined by considering the effective diameter ($d_{F,eff}$) in a far field concept. The EINOx increased in proportion to the flame residence time (${\sim}{\tau_R}^{1/2.8}$) and the global strain rate (${\sim}{S_G}^{1/2.8}$).

A compensation method for the scaling effects in the simulation of a downburst-generated wind-wave field

  • Haiwei Xu;Tong Zheng;Yong Chen;Wenjuan Lou;Guohui Shen
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.261-275
    • /
    • 2024
  • Before performing an experimental study on the downburst-generated wave, it is necessary to examine the scale effects and corresponding corrections or compensations. Analysis of similarity is conducted to conclude the non-dimensional force ratios that account for the dynamic similarity in the interaction of downburst with wave between the prototype and the scale model, along with the corresponding scale factors. The fractional volume of fluid (VOF) method in association with the impinging jet model is employed to explore the characteristics of the downburst-generated wave numerically, and the validity of the proposed scaling method is verified. The study shows that the location of the maximum radial wind velocity in a downburst-wave field is a little higher than that identified in a downburst over the land, which might be attributed to the presence of the wave which changes the roughness of the underlying surface of the downburst. The impinging airflow would generate a concavity in the free surface of the water around the stagnation point of the downburst, with a diameter of about two times the jet diameter (Djet). The maximum wave height appears at the location of 1.5Djet from the stagnation point. Reynolds number has an insignificant influence on the scale effects, in accordance with the numerical investigation of the 30 scale models with the Reynolds number varying from 3.85 × 104 to 7.30 × 109. The ratio of the inertial force of air to the gravitational force of water, which is denoted by G, is found to be the most significant factor that would affect the interaction of downburst with wave. For the correction or compensation of the scale effects, fitting curves for the measures of the downburst-wave field (e.g., wind profile, significant wave height), along with the corresponding equations, are presented as a function of the parameter G.

Prediction of Uniaxial Compressive Strength of Rock using Shield TBM Machine Data and Machine Learning Technique (쉴드 TBM 기계 데이터 및 머신러닝 기법을 이용한 암석의 일축압축강도 예측)

  • Kim, Tae-Hwan;Ko, Tae Young;Park, Yang Soo;Kim, Taek Kon;Lee, Dae Hyuk
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.214-225
    • /
    • 2020
  • Uniaxial compressive strength (UCS) of rock is one of the important factors to determine the advance speed during shield TBM tunnel excavation. UCS can be obtained through the Geotechnical Data Report (GDR), and it is difficult to measure UCS for all tunneling alignment. Therefore, the purpose of this study is to predict UCS by utilizing TBM machine driving data and machine learning technique. Several machine learning techniques were compared to predict UCS, and it was confirmed the stacking model has the most successful prediction performance. TBM machine data and UCS used in the analysis were obtained from the excavation of rock strata with slurry shield TBMs. The data were divided into 8:2 for training and test and pre-processed including feature selection, scaling, and outlier removal. After completing the hyper-parameter tuning, the stacking model was evaluated with the root-mean-square error (RMSE) and the determination coefficient (R2), and it was found to be 5.556 and 0.943, respectively. Based on the results, the sacking models are considered useful in predicting rock strength with TBM excavation data.

Model Equations to Estimate the Soil Water Characteristics Curve Using Scaling Factor (Scaling Factor를 이용한 토양수분특성곡선 추정모형)

  • Eom, Ki-Cheol;Song, Kwan-Cheol;Ryu, Kwan-Shig;Sonn, Yeon-Kyu;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.227-232
    • /
    • 1995
  • The model equations including scaling factors to estimate the soil water characteristics curve(SWCC) without direct measurement of soil water tension were developed. Scaling were applied to a data set of soil water content, soil water tension, particle size distribution, and OM contents of the 134 soil samples with the 10 soil textural classes. The capability of the model equations was tested on another 205 soil samples. The parameter, ${\theta}^*$, of soil water contents was used by scale transformation as follows : ${\theta}^*=[{\theta}i-{\theta}(1.5MPa)]$/$[{\theta}(10KPa)-{\theta}(1.5MPa)]$ Using ${\theta}^*$ a model equation to estimate SWCC, which was applicable to all textural classes, was developed as follows: $H(0.1MPa)=0.13{\cdot}({\theta}^*)^{-2.04}$. Other model equations to estimate the water content at the soil water tension of 10KPa [${\theta}(10KPa)$] and 1.5MPa [${\theta}(1.5MPa)$], which are required to ${\theta}^*$ were developed by using scale factors of sand(S) and silt(Si) content and organic matter content(OM) as foilows : ${\theta}(10KPa)=26.80-3.99ln[S]+2.36{\sqrt{[Si]}}+2.88[OM]$ ($R=0.81^{**}$) ${\theta}(1.5KPa)=15.75-2.86ln[S]+0.55{\sqrt{[Si]}}+0.70[OM]$ ($R=0.76^{**}$) The measured and estimated values of ${\theta}(1/30MPa)$ on the 205 soil samples were highly correlated on 1 : 1 corresponding line with $R=0.85^{**}$.

  • PDF

A Numerical Study of the Effects of Design Parameter upon Fan Performance and Noise (원심홴의 설계 변수가 홴의 성능과 소음에 미치는 영향의 수치적 연구)

  • Jeon, Wan-Ho;Lee, Duck-Joo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.45-51
    • /
    • 1999
  • Centrifugal fans are widely used and the noise generated by these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise due to the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan and to calculate the effects of rotating velocity, flow rate, cut-off distance and the number of blades and its effects on the noise of the fan. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated with the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The cut-off distance is the most important factor effecting the noise generation. Acoustic pressure is proportional to 2.8, which shows the same scaling index as the experimental result. In this paper, the cut-off distance is found to be the dominant parameter offecting the acoustic pressure.

  • PDF

The Optimization of Fuzzy Logic Controllers Using Genetic Algorithm (유전 알고리듬을 이용한 퍼지 제어기의 최적화)

  • Chang, Wook;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.48-57
    • /
    • 1997
  • This paper presents the automatic construction and parameter optimization technique for fuzzy logic controllers using genetic algorithm. In general. the design of fuzzy logic controllers has difficulties in the acq~lisition of expert's knowledge and relies to a great extent on empirical and heuristic knowledge which, in many cases, cannot be objectively justified. So, the performance of the controllers c:an be degraded in the case of plant parameter variations or unpredictable incident which a designer may have ignored, and the parameters of fuzzy logic controllers obtained by expert's control action may not be optirnal. Some of these problems can be resolved by the use of genetic algorithm. The proposed method can tune the parameters of fuzzy logic controllers including scaling factors and determine: the appropriate number of fuzzy rulcs systematically. Finally, we provides the second order dead time plant to evaluate the feasibility and generality of the proposed method. Comparison shows that the proposed method can produce fuzzy logic controllers with higher accuracy and a smaller number of fuzzy rules than manually tuned fuzzy logic controllers.

  • PDF

Interspecies Scaling of Roxithromycin Pharmacokinetics Across Species (록시스로마이신의 체내동태에 대한 이종간 예측모델)

  • Lim, Jong-Hwan;Park, Byung-Kwon;Yun, Hyo-In
    • Journal of Veterinary Clinics
    • /
    • v.24 no.1
    • /
    • pp.5-9
    • /
    • 2007
  • The purpose of this study was to examine the allometric analysis of roxithromycin using pharmacokinetic data. The pharmacokinetic parameters used were $half-life(t_{1/2})$, mean residence time (MRT), clearance (Cl) and volume of distribution at steady state $(V_{ss})$. Relationships between body weight and the pharmacokinetic parameter were based on the empirical formula $Y=aW^b$, where 'Y' is $t_{1/2}$, MRT, Cl, or $V_{ss}$, W the body weight and 'a' is an allometric coefficient (intercept) that is constant for a given drug. The exponential term, 'b', is a proportionality constant that describes the relationship between the pharmacokinetic parameter of interest and body weight. As results of the allometric analyses, the logarithms of $t_{1/2}$, MRT, Cl, and $V_{ss}$ were linearly related to the logarithms of body weight. Results of the current analyses could provide information on appropriate doses of roxithromycin for all species.

A Parametric Study on EOM-based 2D Numerical Wave Generation using OpenFOAM (OpenFOAM을 이용한 EOM 기반 2차원 수치 파 생성에 관한 파라메트릭 연구)

  • Moon, Seong-Ho;Lee, Sungwook;Paik, Kwang-Jun;Kwon, Chang-Seop
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.6
    • /
    • pp.490-496
    • /
    • 2018
  • The consistency of the initially designed waves in the domain is essential for accurate calculation of the added resistance in waves through CFD. In particular, unwanted reflected waves at domain boundaries can cause incorrect numerical solutions due to the superposition with initially designed waves. Euler Overlay Method(EOM) is one of the methods for reducing wave reflections by adding an additional source term to momentum and phase conservation equations, respectively. In this study, we apply the Euler Overlay Method(EOM) to the open-source CFD library, OpenFOAM(R), to simulate the accurate free-surface waves in the domain and the parametric study is performed for efficient implementation of Euler Overlay Method(EOM). Considering that the damping efficiency depends on the selection of the overlay parameter in the added source terms, the size of overlay zone and the wave steepness, the influences of these factors are tested through the wave elevation measured at constant time intervals in the 2D numerical wave tank. Through this process, guidelines for selection of optimal overlay parameter and overlay zone size that can be applied according to the scaling law are finally presented.

Augmented Feature Point Initialization Method for Vision/Lidar Aided 6-DoF Bearing-Only Inertial SLAM

  • Yun, Sukchang;Lee, Byoungjin;Kim, Yeon-Jo;Lee, Young Jae;Sung, Sangkyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1846-1856
    • /
    • 2016
  • This study proposes a novel feature point initialization method in order to improve the accuracy of feature point positions by fusing a vision sensor and a lidar. The initialization is a process that determines three dimensional positions of feature points through two dimensional image data, which has a direct influence on performance of a 6-DoF bearing-only SLAM. Prior to the initialization, an extrinsic calibration method which estimates rotational and translational relationships between a vision sensor and lidar using multiple calibration tools was employed, then the feature point initialization method based on the estimated extrinsic calibration parameters was presented. In this process, in order to improve performance of the accuracy of the initialized feature points, an iterative automatic scaling parameter tuning technique was presented. The validity of the proposed feature point initialization method was verified in a 6-DoF bearing-only SLAM framework through an indoor and outdoor tests that compare estimation performance with the previous initialization method.

Validation of Magnetic Resonance Velocimetry by Turbulent Pipe Flow (자기공명유속계를 이용한 난류 유동장 가시화)

  • Lee, Jeesoo;Song, Simon;Cho, Jee-Hyun
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • Magnetic resonance velocimetry (MRV) is a versatile flow visualization technique using magnetic resonance imaging machine developed for the medical purpose. Recently, MRV is often utilized to analyze engineering flows due to its superior features of MRV such as capabilities of measuring flows with complicated, opaque flow geometry unlike optical techniques, 3-dimensional volumetric velocity vectors within a few hours, and etc. The purpose of this study was to validate the MRV data and evaluate the accuracy of the mean velocity profiles that we acquired for a turbulent flow in a circular pipe using a MR machine installed in Korea Basic Science Institute, Ochang, Korea. In addition, we briefly describe a procedure of parameter optimization for the operation of MRV. The results indicate that the MRV measurements provided well resolved mean velocity fields with a quite reasonable accuracy according to the inner and outer layer scaling laws of the turbulent pipe flows.