• Title/Summary/Keyword: Scaled Cold Flow Test

Search Result 6, Processing Time 0.027 seconds

Analysis of the Thrust Augmentation in the Canister with Baseplate Orifices (오리피스 형상에 따른 발사관 내 부가추력 특성 연구)

  • Yoon, Jin-Young;Lim, Beom-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1067-1072
    • /
    • 2011
  • If the flow of booster gas which is exhausted to the rear part of a canister is properly restricted in the canister of a hot-launch system, the resultant pressure built up in the canister provides additional force to accelerate the missile to a required launch velocity. These thrust augmentation performances can be controlled through the configuration design of baseplate orifices. In this paper, the simple technique to analyze the thrust augmentation performances of baseplate orifices is suggested and the thrust augmentation characteristics by its various configurations are compared. According to the initial displacement of a missile, the inner pressure of a canister is measured from scaled cold flow tests, and the discharge coefficient of baseplate orifices is calculated. Then the thrust augmentation in a canister is simulated by applying these discharge characteristics to the AMESIM software for launch dynamics.

Visualization of Internal Flows in Sub-scaled Wall Injection Test model of SRM (고체로켓모터의 축소형 표면분사 시험모델에서의 내부유동 가시화)

  • Kim, Do-Hun;Cho, Yong-Ho;Lee, Yeol;Koo, Ja-Ye;Kim, Yoon-Gon;Kang, Moon-Jung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.225-227
    • /
    • 2011
  • The geometrically sub-scaled wall-injection test model was employed to visualize interactions of internal flow of a solid rocket motor equipped fin/slot grain and submerged nozzle. Symmetric vortex and circumferential flow patterns were visualized.

  • PDF

MODELING OF A BUOYANCY-DRIVEN FLOW EXPERIMENT IN PRESSURIZED WATER REACTORS USING CFD-METHODS

  • Hohne, Thomas;Kliem, Soren
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.327-336
    • /
    • 2007
  • The influence of density differences on the mixing of the primary loop inventory and the Emergency Core Cooling (ECC) water in the downcomer of a Pressurised Water Reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields. This paper presents a ROCOM experiment in which water with higher density was injected into a cold leg of the reactor model. Wire-mesh sensors measuring the tracer concentration were installed in the cold leg and upper and lower part of the downcomer. The experiment was run with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water especially for the validation of the Computational Fluid Dynamics (CFD) software ANSYS CFX. A mesh with two million control volumes was used for the calculations. The effects of turbulence on the mean flow were modelled with a Reynolds stress turbulence model. The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: At higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this circumferential propagation. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. ANSYS CFX was able to predict the observed flow patterns and mixing phenomena quite well.

Feasibility Study on Cold Water Pipe Diameter by Friction Loss and Energy Conversion on OTEC (해양온도차 발전을 위한 심층수 파이프 직경에 따른 에너지 손실량 검토)

  • Jung, Hoon;Heo, Gyunyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.170-170
    • /
    • 2010
  • The energy conversion from the temperature difference between hot and cold source like ocean thermal energy conversion (OTEC), requires a long and large-diameter pipe (about 1000 to 10,000 meters long) to reach the deep water. The pipe diameter ranges from 2.8 meter for proposed early test systems, to 5 meter for large, commercial power generation systems. The pipe must be designed to resist collapsing pressures produced by water temperature and density differences, and the reduced pressure required to induce flow up the pipe. Other design considerations include the external-drag effect on the pipe due to ocean currents, and the wave-induced motions of the platform to which the pipe is attached. Various approaches to the pipe construction have been proposed, including aluminum, steel, concrete, and fiberglass. More recently, a flexible pipe construction involving the use of fiberglass reinforced plastic has been proposed. This report presents the results of a scaled fixed cold water pipe (CWP) model test program performed by EES(Engineering Equation Solver) to demonstrate the feasibility of this pipe approach.

  • PDF

Starting Characteristics of Supersonic Exhaust Diffuser for Altitude Simulation Testing (고공환경 모사를 위한 초음속 디퓨저의 시동 특성 분석)

  • Kim, Yong-Wook;Lee, Jung-Ho;Kim, Sang-Heon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.117-121
    • /
    • 2012
  • Upper stage propulsion system designed for operation in the upper atmosphere should be tested under nozzle full flow conditions to verify its performance on the ground. KARI has carried out high altitude simulation test of KSLV-I kick motor using cylindrical supersonic exhaust diffuser. Also cold and hot flow test for the sub-scaled diffuser have been conducted to verify the design of real scale diffuser and to study its operating characteristics. This paper deals with the results obtained from these high altitude simulation tests.

A Numerical Study on Acoustic Tuning of Quarter-Wave Resonators in a Model Combustion Chamber (연소실에서 1/4파장 공명기의 주파수 동조에 대한 수치적 연구)

  • Park, Ju-Hyun;Park, I-Sun;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.281-284
    • /
    • 2009
  • Acoustic tuning frequency of quarter-wave resonators is investigated numerically to suppress combustion instability in a liquid rocket engine. A quarter-wave resonator is adopted, which was designed from the cold acoustic test for optimal damping condition. First, in a model combustion chamber scaled down from a full-scale chamber, reactive flow filed is analyzed numerically and acoustic-pressure responses are examined. Next, thermodynamic properties in the resonators are predicted. Based on the data, frequency tuning method is studied. The optimum tuning length of each resonator is proposed and thereby, sufficient damping is produced.

  • PDF