• Title/Summary/Keyword: Scale-invariant Feature

Search Result 235, Processing Time 0.022 seconds

A Study on Real-time Processing of The Gaussian Filter using The SSE Instruction Set. (SSE 명령어 기반 실시간 처리 가우시안 필터 연구)

  • Chang, Pil-Jung;Lee, Jong-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.89-92
    • /
    • 2006
  • 본 논문은 SIFT(Scale Invariant Feature Transform)알고리즘의 실시간처리 응용프로그램 작성기법을 기술하고 있는데, 단일 프로세서에서 병렬처리 기능을 지원하도록 설계된 SSE 명령어 집합을 사용하여 가우시안 convolution을 구현하고 있다. SIFT알고리즘의 Scale-space를 생성하는 과정에 수행되는 가우시안 Convolution은 연산시간이 과도하게 요구된다.[1] 2D의 가우시안 필터가 영상을 구성하는 모든 셀과 1:1로 연산을 수행하므로 이 연산의 소요시간은 영상의 가로, 세로 길이 그리고 필터의 크기에 비례하여 결정된다. 이 논문에서 제안하는 방법은 연산을 위해 CPU 내부로 한번 읽어 들인 픽셀자료에 대해 가능한 모든 연산을 SSE 명령어 집합을 사용하여 수행함으로써 병렬 연산에 의한 연산시간 절감과 메모리 접근 최소화를 통한 입출력시간 절감을 통해 전체 연산시간을 단축 하였다.

  • PDF

Panoramic Image Stitching using SURF

  • You, Meng;Lim, Jong-Seok;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.26-32
    • /
    • 2011
  • This paper proposes a new method to process panoramic image stitching using SURF(Speeded Up Robust Features). Panoramic image stitching is considered a problem of the correspondence matching. In computer vision, it is difficult to find corresponding points in variable environment where a scale, rotation, view point and illumination are changed. However, SURF algorithm have been widely used to solve the problem of the correspondence matching because it is faster than SIFT(Scale Invariant Feature Transform). In this work, we also describe an efficient approach to decreasing computation time through the homography estimation using RANSAC(random sample consensus). RANSAC is a robust estimation procedure that uses a minimal set of randomly sampled correspondences to estimate image transformation parameters. Experimental results show that our method is robust to rotation, zoom, Gaussian noise and illumination change of the input images and computation time is greatly reduced.

Effective Marker Placement Method By De Bruijn Sequence for Corresponding Points Matching (드 브루인 수열을 이용한 효과적인 위치 인식 마커 구성)

  • Park, Gyeong-Mi;Kim, Sung-Hwan;Cho, Hwan-Gue
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.6
    • /
    • pp.9-20
    • /
    • 2012
  • In computer vision, it is very important to obtain reliable corresponding feature points. However, we know it is not easy to find the corresponding feature points exactly considering by scaling, lighting, viewpoints, etc. Lots of SIFT methods applies the invariant to image scale and rotation and change in illumination, which is due to the feature vector extracted from corners or edges of object. However, SIFT could not find feature points, if edges do not exist in the area when we extract feature points along edges. In this paper, we present a new placement method of marker to improve the performance of SIFT feature detection and matching between different view of an object or scene. The shape of the markers used in the proposed method is formed in a semicircle to detect dominant direction vector by SIFT algorithm depending on direction placement of marker. We applied De Bruijn sequence for the markers direction placement to improve the matching performance. The experimental results show that the proposed method is more accurate and effective comparing to the current method.

Mixed Mobile Education System using SIFT Algorithm (SIFT 알고리즘을 이용한 혼합형 모바일 교육 시스템)

  • Hong, Kwang-Jin;Jung, Kee-Chul;Han, Eun-Jung;Yang, Jong-Yeol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.2
    • /
    • pp.69-79
    • /
    • 2008
  • Due to popularization of the wireless Internet and mobile devices the infrastructure of the ubiquitous environment, where users can get information whatever they want anytime and anywhere, is created. Therefore, a variety of fields including the education studies methods for efficiency of information transmission using on-line and off-line contents. In this paper, we propose the Mixed Mobile Education system(MME) that improves educational efficiency using on-line and off-line contents on mobile devices. Because it is hard to input new data and cannot use similar off-line contents in systems used additional tags, the proposed system does not use additional tags but recognizes of-line contents as we extract feature points in the input image using the mobile camera. We use the Scale Invariant Feature Transform(SIFT) algorithm to extract feature points which are not affected by noise, color distortion, size and rotation in the input image captured by the low resolution camera. And we use the client-server architecture for solving the limited storage size of the mobile devices and for easily registration and modification of data. Experimental results show that compared with previous work, the proposed system has some advantages and disadvantages and that the proposed system has good efficiency on various environments.

  • PDF

Comparison of Multi-angle TerraSAR-X Staring Mode Image Registration Method through Coarse to Fine Step (Coarse to Fine 단계를 통한 TerraSAR-X Staring Mode 다중 관측각 영상 정합기법 비교 분석)

  • Lee, Dongjun;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.475-491
    • /
    • 2021
  • With the recent increase in available high-resolution (< ~1 m) satellite SAR images, the demand for precise registration of SAR images is increasing in various fields including change detection. The registration between high-resolution SAR images acquired in different look angle is difficult due to speckle noise and geometric distortion caused by the characteristics of SAR images. In this study, registration is performed in two stages, coarse and fine, using the x-band SAR data imaged at staring spotlight mode of TerraSAR-X. For the coarse registration, a method combining the adaptive sampling method and SAR-SIFT (Scale Invariant Feature Transform) is applied, and three rigid methods (NCC: Normalized Cross Correlation, Phase Congruency-NCC, MI: Mutual Information) and one non-rigid (Gefolki: Geoscience extended Flow Optical Flow Lucas-Kanade Iterative), for the fine registration stage, was performed for performance comparison. The results were compared by using RMSE (Root Mean Square Error) and FSIM (Feature Similarity) index, and all rigid models showed poor results in all image combinations. It is confirmed that the rigid models have a large registration error in the rugged terrain area. As a result of applying the Gefolki algorithm, it was confirmed that the RMSE of Gefolki showed the best result as a 1~3 pixels, and the FSIM index also obtained a higher value than 0.02~0.03 compared to other rigid methods. It was confirmed that the mis-registration due to terrain effect could be sufficiently reduced by the Gefolki algorithm.

Plant leaf Classification Using Orientation Feature Descriptions (방향성 특징 기술자를 이용한 식물 잎 인식)

  • Gang, Su Myung;Yoon, Sang Min;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.3
    • /
    • pp.300-311
    • /
    • 2014
  • According to fast change of the environment, the structured study of the ecosystem by analyzing the plant leaves are needed. Expecially, the methodology that searches and classifies the leaves from captured from the smart device have received numerous concerns in the field of computer science and ecology. In this paper, we propose a plant leaf classification technique using shape descriptor by combining Scale Invarinat Feature Transform (SIFT) and Histogram of Oriented Gradient (HOG) from the image segmented from the background via Graphcut algorithm. The shape descriptor is coded in the field of Locality-constrained Linear Coding to optimize the meaningful features from a high degree of freedom. It is connected to Support Vector Machines (SVM) for efficient classification. The experimental results show that our proposed approach is very efficient to classify the leaves which have similar color, and shape.

Development of a SLAM System for Small UAVs in Indoor Environments using Gaussian Processes (가우시안 프로세스를 이용한 실내 환경에서 소형무인기에 적합한 SLAM 시스템 개발)

  • Jeon, Young-San;Choi, Jongeun;Lee, Jeong Oog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1098-1102
    • /
    • 2014
  • Localization of aerial vehicles and map building of flight environments are key technologies for the autonomous flight of small UAVs. In outdoor environments, an unmanned aircraft can easily use a GPS (Global Positioning System) for its localization with acceptable accuracy. However, as the GPS is not available for use in indoor environments, the development of a SLAM (Simultaneous Localization and Mapping) system that is suitable for small UAVs is therefore needed. In this paper, we suggest a vision-based SLAM system that uses vision sensors and an AHRS (Attitude Heading Reference System) sensor. Feature points in images captured from the vision sensor are obtained by using GPU (Graphics Process Unit) based SIFT (Scale-invariant Feature Transform) algorithm. Those feature points are then combined with attitude information obtained from the AHRS to estimate the position of the small UAV. Based on the location information and color distribution, a Gaussian process model is generated, which could be a map. The experimental results show that the position of a small unmanned aircraft is estimated properly and the map of the environment is constructed by using the proposed method. Finally, the reliability of the proposed method is verified by comparing the difference between the estimated values and the actual values.

Patent Document Similarity Based on Image Analysis Using the SIFT-Algorithm and OCR-Text

  • Park, Jeong Beom;Mandl, Thomas;Kim, Do Wan
    • International Journal of Contents
    • /
    • v.13 no.4
    • /
    • pp.70-79
    • /
    • 2017
  • Images are an important element in patents and many experts use images to analyze a patent or to check differences between patents. However, there is little research on image analysis for patents partly because image processing is an advanced technology and typically patent images consist of visual parts as well as of text and numbers. This study suggests two methods for using image processing; the Scale Invariant Feature Transform(SIFT) algorithm and Optical Character Recognition(OCR). The first method which works with SIFT uses image feature points. Through feature matching, it can be applied to calculate the similarity between documents containing these images. And in the second method, OCR is used to extract text from the images. By using numbers which are extracted from an image, it is possible to extract the corresponding related text within the text passages. Subsequently, document similarity can be calculated based on the extracted text. Through comparing the suggested methods and an existing method based only on text for calculating the similarity, the feasibility is achieved. Additionally, the correlation between both the similarity measures is low which shows that they capture different aspects of the patent content.

FPGA Design of a SURF-based Feature Extractor (SURF 알고리즘 기반 특징점 추출기의 FPGA 설계)

  • Ryu, Jae-Kyung;Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.368-377
    • /
    • 2011
  • This paper explains the hardware structure of SURF(Speeded Up Robust Feature) based feature point extractor and its FPGA verification result. SURF algorithm produces novel scale- and rotation-invariant feature point and descriptor which can be used for object recognition, creation of panorama image, 3D Image restoration. But the feature point extraction processing takes approximately 7,200msec for VGA-resolution in embedded environment using ARM11(667Mhz) processor and 128Mbytes DDR memory, hence its real-time operation is not guaranteed. We analyzed integral image memory access pattern which is a key component of SURF algorithm to reduce memory access and memory usage to operate in c real-time. We assure feature extraction that using a Vertex-5 FPGA gives 60frame/sec of VGA image at 100Mhz.

Mobile Robot Localization and Mapping using Scale-Invariant Features (스케일 불변 특징을 이용한 이동 로봇의 위치 추정 및 매핑)

  • Lee, Jong-Shill;Shen, Dong-Fan;Kwon, Oh-Sang;Lee, Eung-Hyuk;Hong, Seung-Hong
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.7-18
    • /
    • 2005
  • A key component of an autonomous mobile robot is to localize itself accurately and build a map of the environment simultaneously. In this paper, we propose a vision-based mobile robot localization and mapping algorithm using scale-invariant features. A camera with fisheye lens facing toward to ceiling is attached to the robot to acquire high-level features with scale invariance. These features are used in map building and localization process. As pre-processing, input images from fisheye lens are calibrated to remove radial distortion then labeling and convex hull techniques are used to segment ceiling region from wall region. At initial map building process, features are calculated for segmented regions and stored in map database. Features are continuously calculated from sequential input images and matched against existing map until map building process is finished. If features are not matched, they are added to the existing map. Localization is done simultaneously with feature matching at map building process. Localization. is performed when features are matched with existing map and map building database is updated at same time. The proposed method can perform a map building in 2 minutes on $50m^2$ area. The positioning accuracy is ${\pm}13cm$, the average error on robot angle with the positioning is ${\pm}3$ degree.

  • PDF