• Title/Summary/Keyword: Scale-Free Property

Search Result 25, Processing Time 0.022 seconds

Constructing a Social Contact Network based on Cellphone Call Records and Analysis of its Scale-free Property (휴대폰 통화기록 기반의 소셜 컨택 네트워크 구성 및 Scale-free 특성에 관한 분석)

  • Lee, Jinho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • We consider a human contact social network that has connections through cellphone addresses. To construct such a social network, we use real call records provided by a large carrier, and connect to each other if there exists a call record between any two cellphone users. Due to its huge amount of data, we down-sample it in a way that the smallest-degree nodes are removed, in turn, from the network. For a moderate size of the networks we show that the degree distribution of the network follows a power-law distribution via linear regression analysis, implying the so-called scale-free property. We finally suggest some alternative measures to analyze a social network.

Generalized Network Generation Method for Small-World Network and Scale-Free Network (Small-World 망과 Scale-Free 망을 위한 일반적인 망 생성 방법)

  • Lee, Kang-won;Lee, Jae-hoon;Choe, Hye-zin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.754-764
    • /
    • 2016
  • To understand and analyze SNS(Social Network Service) two important classes of networks, small-world and scale-free networks have gained a lot of research interests. In this study, a generalized network generation method is developed, which can produce small-world network, scale-free network, or network with the properties of both small-world and scale-free by controlling two input parameters. By tuning one parameter we can represent the small-world property and by tuning the other one we can represent both scale-free and small-world properties. For the network measures to represent small-world and scale-free properties clustering coefficient, average shortest path distance and power-law property are used. Using the model proposed in this study we can have more clear understanding about relationships between small-world network and scale-free network. Using numerical examples we have verified the effects of two parameters on clustering coefficient, average shortest path distance and power-law property. Through this investigation it can be shown that small-world network, scale-free network or both can be generated by tuning two input parameters properly.

Meso-Scale Approach for Prediction of Mechanical Property and Degradation of Concrete

  • Ueda, Tamon
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.87-97
    • /
    • 2004
  • This paper presents a new approach with meso scale structure models to express mechanical property, such as stress - strain relationships, of concrete. This approach is successful to represent both uniaxial tension and uniaxial compression stress - strain relationship, which is in macro scale. The meso scale approach is also applied to predict degraded mechanical properties of frost-damaged concrete. The degradation of mechanical properties with frost-damaged concrete was carefully observed. Strength and stiffness in both tension and compression decrease with freezing and thawing cycles (FTC), while stress-free crack opening in tension softening increases. First attempt shows that the numerical simulation can express the experimentally observed degradation by introducing changes in the meso scale structure in concrete, which are assumed based on observed damages in the concrete subjected to FTC. At the end applicability of the meso scale approach to prediction of the degradation by combined effects of salt attack and FTC is discussed. It is shown that clarification of effects of frost damage in concrete on corrosion progress and on crack development in the damaged cover concrete due to corrosion is one of the issues for which the meso scale approach is useful.

Manufacturing Technology of Thin Foil Tensile Specimen Using CIP and Mechanical Property Measurement Technology (냉간 등방압 성형기를 이용한 미세박판 인장시편의 가공 및 기계적 물성측정 기술)

  • Lee N.K.;Park H. J.;Kim S. S.;Lee H. W.;Hwang J. H.;Park J. H.;Lee H. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.509-513
    • /
    • 2005
  • This paper is concerned with manufacturing technology of thin foil tensile specimen using CIP(Cold Isostatic Press) and measurement of precision mechanical properties using micro tensile testing. We can get a burr free micro metallic thin foil specimen using this technology. For testing mechanical property of this micro thin foil, we use a nano scale material testing machine that was developed by KITECH. In this paper, micro tensile specimens of nickel and copper thin foil are fabricated with CIP and precision mechanical properties of these materials could be measured. We will expect precision mechanical property of micro/nano material and component.

Manufacturing Technology of Thin Foil Tensile Specimen Using Cold Isostatic Press and Precision Mechanical Property Measurement Technology (냉간 등방압 성형기를 이용한 미세박판 인장시험시편 가공기술 및 정밀 기계적 물성 측정기술)

  • Lee H. J.;Park H. J.;Lee N. K.;Kim S. S.;Lee H. W.;Hwang J. H.;Park J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.245-248
    • /
    • 2005
  • This paper is concerned with manufacturing technology of thin foil tensile specimen using CIP(Cold Isostatic Press) and measurement of precision mechanical property. This thin foil tensile specimen manufacturing technology is a method that can make a metal thin foil specimen for micro tensile testing. We can get a burr free micro metallic thin foil specimen using this technology. For testing mechanical property of this micro thin foil, we use a nano scale material testing machine that was developed by KITECH. In this paper, micro tensile specimens of nickel and copper thin foil are fabricated with CIP and precision mechanical properties of these materials could be measured. We will expect that precision mechanical property of micro/nano material and component. Micro and Nano mechanical property can be measured using this technology and mechanical property data base of micro/nano material and component can be constructed.

  • PDF

Thermal nonlinear dynamic and stability of carbon nanotube-reinforced composite beams

  • M. Alimoradzadeh;S.D. Akbas
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.637-647
    • /
    • 2023
  • Nonlinear free vibration and stability responses of a carbon nanotube reinforced composite beam under temperature rising are investigated in this paper. The material of the beam is considered as a polymeric matrix by reinforced the single-walled carbon nanotubes according to different distributions with temperature-dependent physical properties. With using the Hamilton's principle, the governing nonlinear partial differential equation is derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The critical buckling temperatures, the nonlinear natural frequencies and the nonlinear free response of the system is obtained. The effect of different patterns of reinforcement on the critical buckling temperature, nonlinear natural frequency, nonlinear free response and phase plane trajectory of the carbon nanotube reinforced composite beam investigated with temperature-dependent physical property.

An extension of a high order approach for free vibration analysis of the nano-scale sandwich beam with steel skins for two types of soft and stiff cores

  • Marandi, S. Masoud;Dehkordi, Mohsen Botshekanan;Nourbakhsh, S. Hassan
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.261-276
    • /
    • 2019
  • The study investigates the free vibration of a nano-scale sandwich beam by an extended high order approach, which has not been reported in the existing literature. First-order shear deformation theory for steel skins and so-called high-order sandwich panel theory for the core are applied. Next, the modified couple stress theory is used for both skins and cores. The Hamilton principle is utilized for deriving equations and corresponding boundary conditions. First, in the study the three-mode shapes natural frequencies for various material parameters are investigated. Also, obtained results are evaluated for two types of stiff and soft cores and isotropic, homogenous steel skins. In the research since the governing equations and also the boundary conditions are nonhomogeneous, therefore some closed-form solutions are not applicable. So, to obtain natural frequencies, the boundary conditions are converted to initial conditions called the shooting method as the numerical one. This method is one of the most robust approaches to solve complex equations and boundary conditions. Moreover, three types of simply supported on both sides of the beam (S-S), simply on one side and clamp supported on the other one (S-C) and clamped supported on both sides (C-C) are scrutinized. The parametric study is followed to evaluate the effect of nano-size scale, geometrical configurations for skins, core and material property change for cores as well. Results show that natural frequencies increase by an increase in skins thickness and core Young modulus and a decrease in beam length, core thickness as well. Furthermore, differences between obtained frequencies for soft and stiff cores increase in higher mode shapes; while, the more differences are evaluated for the stiff one.

A comprehensive review on the modeling of smart piezoelectric nanostructures

  • Ebrahimi, Farzad;Hosseini, S.H.S.;Singhal, Abhinav
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.611-633
    • /
    • 2020
  • In this paper, a comprehensive review of nanostructures that exhibit piezoelectric behavior on all mechanical, buckling, vibrational, thermal and electrical properties is presented. It is firstly explained vast application of materials with their piezoelectric property and also introduction of other properties. Initially, more application of material which have piezoelectric property is introduced. Zinc oxide (ZnO), boron nitride (BN) and gallium nitride (GaN) respectively, are more application of piezoelectric materials. The nonlocal elasticity theory and piezoelectric constitutive relations are demonstrated to evaluate problems and analyses. Three different approaches consisting of atomistic modeling, continuum modeling and nano-scale continuum modeling in the investigation atomistic simulation of piezoelectric nanostructures are explained. Focusing on piezoelectric behavior, investigation of analyses is performed on fields of surface and small scale effects, buckling, vibration and wave propagation. Different investigations are available in literature focusing on the synthesis, applications and mechanical behaviors of piezoelectric nanostructures. In the study of vibration behavior, researches are studied on fields of linear and nonlinear, longitudinal and transverse, free and forced vibrations. This paper is intended to provide an introduction of the development of the piezoelectric nanostructures. The key issue is a very good understanding of mechanical and electrical behaviors and characteristics of piezoelectric structures to employ in electromechanical systems.

A Study on the Robustness of the Bitcoin Lightning Network (Bitcoin Lightning Network의 강건성에 대한 연구)

  • Lee, Seung-jin;Kim, Hyoung-shick
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.4
    • /
    • pp.1009-1019
    • /
    • 2018
  • Bitcoin is the first application utilizing the blockchain, but it has limitations in terms of scalability. The concept of Lightning Network was recently introduced to address the scalability problem of Bitcoin. In this paper, we found that the real-world Bitcoin Lightning Network shows the scale-free property. Therefore, the Bitcoin Lightning Network can be vulnerable to the intentional attacks targeting some specific nodes in the network while it is still robust to the random node failures. We experimentally analyze the robustness of the Bitcoin's Lightning Network via the simulation of network attack model. Our simulation results demonstrate that the real-world Lightning Network is vulnerable to target attacks that destroy a few nodes with high degree.

Dynamic modeling of smart magneto-electro-elastic curved nanobeams

  • Ebrahimi, Farzad;Barati, Mohammad Reza;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.145-155
    • /
    • 2019
  • In this article, the influence of small scale effects on the free vibration response of curved magneto-electro-elastic functionally graded (MEE-FG) nanobeams has been investigated considering nonlocal elasticity theory. Power-law is used to judge the through thickness material property distribution of MEE nanobeams. The Euler-Bernoulli beam model has been adopted and through Hamilton's principle the Nonlocal governing equations of curved MEE-FG nanobeam are obtained. The analytical solutions are obtained and validated with the results reported in the literature. Several parametric studies are performed to assess the influence of nonlocal parameter, magnetic potential, electric voltage, opening angle, material composition and slenderness ratio on the dynamic behaviour of MEE curved nanobeams. It is believed that the results presented in this article may serve as benchmark results in accurate analysis and design of smart nanostructures.