• Title/Summary/Keyword: Scale Computation

Search Result 412, Processing Time 0.025 seconds

Clustering of Web Objects with Similar Popularity Trends (유사한 인기도 추세를 갖는 웹 객체들의 클러스터링)

  • Loh, Woong-Kee
    • The KIPS Transactions:PartD
    • /
    • v.15D no.4
    • /
    • pp.485-494
    • /
    • 2008
  • Huge amounts of various web items such as keywords, images, and web pages are being made widely available on the Web. The popularities of such web items continuously change over time, and mining temporal patterns in popularities of web items is an important problem that is useful for several web applications. For example, the temporal patterns in popularities of search keywords help web search enterprises predict future popular keywords, enabling them to make price decisions when marketing search keywords to advertisers. However, presence of millions of web items makes it difficult to scale up previous techniques for this problem. This paper proposes an efficient method for mining temporal patterns in popularities of web items. We treat the popularities of web items as time-series, and propose gapmeasure to quantify the similarity between the popularities of two web items. To reduce the computation overhead for this measure, an efficient method using the Fast Fourier Transform (FFT) is presented. We assume that the popularities of web items are not necessarily following any probabilistic distribution or periodic. For finding clusters of web items with similar popularity trends, we propose to use a density-based clustering algorithm based on the gap measure. Our experiments using the popularity trends of search keywords obtained from the Google Trends web site illustrate the scalability and usefulness of the proposed approach in real-world applications.

Radar Rainfall Estimation Using Window Probability Matching Method : 1. Establishment of Ze-R Relationship for Kwanak Mt, DWSR-88C at Summer, 1998 (WPMM 방법을 이용한 레이더 강수량 추정 : 1. 1998년 여름철 관악산 DWSR-88C를 위한 Ze-R 관계식 산출)

  • Kim, Hyo-Gyeong;Lee, Dong-In;Yu, Cheol-Hwan;Gwon, Won-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.25-36
    • /
    • 2002
  • Window Probability Matching Method(WPMM) is achieved by matching identical probability density of rain intensities and radar reflectivities taken only from small window centered about the gage. The equation of $Z_{e}-R$ relationship is obtained and compared with data between a DWSR-88C radar and high density rain gage networks within 150km from radar site in summer season, 1998. The probability density of radar effective reflectivity is distributed with high frequency near 15dBZ. The frequency distribution of rain intensities shows that rain intensity is lower than 10mm/hr in most part of radar coverage area. As the result of $Z_{e}-R$ relationship using WPMM, curved line has shown to the log scale spatially and it can be explained more flexible than any straight-line power laws at the transformation to the rainfall amount from $Z_e$ value. During 3 months, total radar cumulative rainfall amount estimated by $Z=200R^{1.6}$ and WPMM relationships are 44 and 80 percentages of total raingage amount, respectively. Therefore, $Z_{e}-R$ relationships by WPMM may be widely needed a statistical method for the computation of accumulated precipitation.

Study on the Selection of the Basin Characteristics Parameters in River Basin Using Satellite Images and GIS (위성영상(衛星映像)과 GIS를 이용한 하천유역(河川流域)의 유역특성인자(流域特性因子) 추출(抽出)추출 관한 연구(硏究))

  • Jo, Myung-Hee;Ahn, Seung-Seop
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.1
    • /
    • pp.121-134
    • /
    • 1998
  • In this study, the satellite images and the GIS technique are used to select the basin characteristics parameters as the basis of water resources management of river basin. The study area is Geum-ho river basin and the hydrologic characteristics data are computed through the database of the basin characteristics parameters classified by subjects with 35 maps correspond to the study basin of 1:25,000 scale as the basic map. As the result, the drawing up of land use map through satellite image processing that provides the quantitative informations for the land is very efficient to analysis the extensive land use information of the basin, and exact analysis of mass surface data is possible and the feasibility of statistic computation between spatial subjects as it superpose on other subject map is ascertained. It is thought also that the analysis of the basin characteristics data can be utilized very effectively for the basin management and the analysis of basin surface area, once it is expressed numerically for database, since the superposition analysis with different subject map and the correlative analysis with the property data are possible although the tracing process of each subject in the basic map is not efficient. Especially, modification and renewal of the data for the change of land surface become easy, therefore more rapid and exact selection of the basin characteristics data and the construction of more efficient basin management plan are possible.

  • PDF

Probabilistic Medium- and Long-Term Reservoir Inflow Forecasts (I) Long-Term Runoff Analysis (확률론적 중장기 댐 유입량 예측 (I) 장기유출 해석)

  • Bae, Deg-Hyo;Kim, Jin-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.261-274
    • /
    • 2006
  • This study performs a daily long-term runoff analysis for 30 years to forecast medium- and long-term probabilistic reservoir inflows on the Soyang River basin. Snowmelt is computed by Anderson's temperature index snowmelt model and potenetial evaporation is estimated by Penman-combination method to produce input data for a rainfall-runoff model. A semi-distributed TOPMODEL which is composed of hydrologic rainfall-runoff process on the headwater-catchment scale based on the original TOPMODEL and a hydraulic flow routing model to route the catchment outflows using by kinematic wave scheme is used in this study It can be observed that the time variations of the computed snowmelt and potential evaporation are well agreed with indirect observed data such as maximum snow depth and small pan evaporation. Model parameters are calibrated with low-flow(1979), medium-flow(1999), and high-flow(1990) rainfall-runoff events. In the model evaluation, relative volumetric error and correlation coefficient between observed and computed flows are computed to 5.64% and 0.91, respectively. Also, the relative volumetric errors decrease to 17% and 4% during March and April with or without the snowmelt model. It is concluded that the semi-distributed TOPMODEL has well performance and the snowmelt effects for the long-term runoff computation are important on the study area.

A Study on the determination of the optimal resolution for the application of the distributed rainfall-runoff model to the flood forecasting system - focused on Geumho river basin using GRM (분포형 유역유출모형의 홍수예보시스템 적용을 위한 최적해상도 결정에 관한 연구 - GRM 모형을 활용하여 금호강 유역을 중심으로)

  • Kim, Sooyoung;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.107-113
    • /
    • 2019
  • The flood forecasting model currently used in Korea calculates the runoff of basin using the lumped rainfall-runoff model and estimates the river level using the river and reservoir routing models. The lumped model assumes homogeneous drainage zones in the basin. Therefore, it can not consider various spatial characteristics in the basin. In addition, the rainfall data used in lumped model also has the same limitation because of using the point scale rainfall data. To overcome the limitations as mentioned above, many researchers have studied to apply the distributed rainfall-runoff model to flood forecasting system. In this study, to apply the Grid-based Rainfall-Runoff Model (GRM) to the Korean flood forecasting system, the optimal resolution is determined by analyzing the difference of the results of the runoff according to the various resolutions. If the grid size is to small, the computation time becomes excessive and it is not suitable for applying to the flood forecasting model. Even if the grid size is too large, it does not fit the purpose of analyzing the spatial distribution by applying the distributed model. As a result of this study, the optimal resolution which satisfies the accuracy of the bsin runoff prediction and the calculation speed suitable for the flood forecasting was proposed. The accuracy of the runoff prediction was analyzed by comparing the Nash-Sutcliffe model efficiency coefficient (NSE). The optimal resolution estimated from this study will be used as basic data for applying the distributed rainfall-runoff model to the flood forecasting system.

Discharge Computation from Float Measurement in Vegetated Stream (부자 측정 시 식생을 고려한 유량산정에 관한 연구)

  • Lee, Tae Hee;Jung, Sung Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.307-316
    • /
    • 2019
  • Development of vegetation in stream channel increases resistance to flow, resulting in increase in river stage upon flood and affecting change in stage-discharge relationship. Vegetation revealed in stream by water level reaching a peak and then declined upon flood is mostly found as prone. Taking an account of flow distribution with the number of vegetation, prone vegetation layer might be at height where discharge rate is zero (0) (Stephan and Guthnecht, 2002). However, there is a tendency that flow rate is overestimated when applying the height of river bed to flow area with no consideration of the height of vegetation layer in flow rate by float measurement. In this study, reliable flow measurement in stream with vegetation was calculated by measuring the height of vegetation layer after flood and excluding the vegetation layer-projected area from the flow area. The result showed the minimum 4.34 % to maximum 10.82 % of flow deviation depending on the scale of discharge. Accordingly, reliable velocity-area methods would be determined if vegetation layer-projected area in stream is considered in flow rate estimation using the flow area during the flood.

Evaluation of the DCT-PLS Method for Spatial Gap Filling of Gridded Data (격자자료 결측복원을 위한 DCT-PLS 기법의 활용성 평가)

  • Youn, Youjeong;Kim, Seoyeon;Jeong, Yemin;Cho, Subin;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1407-1419
    • /
    • 2020
  • Long time-series gridded data is crucial for the analyses of Earth environmental changes. Climate reanalysis and satellite images are now used as global-scale periodical and quantitative information for the atmosphere and land surface. This paper examines the feasibility of DCT-PLS (penalized least square regression based on discrete cosine transform) for the spatial gap filling of gridded data through the experiments for multiple variables. Because gap-free data is required for an objective comparison of original with gap-filled data, we used LDAPS (Local Data Assimilation and Prediction System) daily data and MODIS (Moderate Resolution Imaging Spectroradiometer) monthly products. In the experiments for relative humidity, wind speed, LST (land surface temperature), and NDVI (normalized difference vegetation index), we made sure that randomly generated gaps were retrieved very similar to the original data. The correlation coefficients were over 0.95 for the four variables. Because the DCT-PLS method does not require ancillary data and can refer to both spatial and temporal information with a fast computation, it can be applied to operative systems for satellite data processing.

A Numerical Study on the Characteristics of Flows and Fine Particulate Matter (PM2.5) Distributions in an Urban Area Using a Multi-scale Model: Part I - Analysis of Detailed Flows (다중규모 모델을 이용한 도시 지역 흐름과 초미세먼지(PM2.5) 분포 특성 연구: Part I - 상세 흐름 분석)

  • Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1643-1652
    • /
    • 2020
  • To investigate the characteristics of detailed flows in a building-congested district, we coupled a computation fluid dynamics (CFD) model to the local data assimilation and prediction system (LDAPS), a current operational numerical weather prediction model of the Korea Meteorological Administration. For realistic numerical simulations, we used the meteorological variables such as wind speeds and directions and potential temperatures predicted by LDAPS as the initial and boundary conditions of the CFD model. We trilinearly interpolated the horizontal wind components of LDAPS to provide the initial and boudnary wind velocities to the CFD model. The trilinearly interpolated potential temperatures of LDAPS is converted to temperatures at each grid point of the CFD model. We linearly interpolated the horizontal wind components of LDAPS to provide the initial and boundary wind velocities to the CFD model. The linearly interpolated potential temperatures of LDAPS are converted to temperatures at each grid point of the CFD model. We validated the simulated wind speeds and directions against those measured at the PKNU-SONIC station. The LDAPS-CFD model reproduced similar wind directions and wind speeds measured at the PKNU-SONIC station. At 07 LST on 22 June 2020, the inflow was east-north-easterly. Flow distortion by buildings resulted in the east-south-easterly at the PKNU-SONIC station, which was the similar wind direction to the measured one. At 19 LST when the inflow was southeasterly, the LDAPS-CFD model simulated southeasterly (similar to the measured wind direction) at the PKNU-SONIC station.

An Improved Reliability-Based Design Optimization using Moving Least Squares Approximation (이동최소자승근사법을 이용한 개선된 신뢰도 기반 최적설계)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.45-52
    • /
    • 2009
  • In conventional structural design, deterministic optimization which satisfies codified constraints is performed to ensure safety and maximize economical efficiency. However, uncertainties are inevitable due to the stochastic nature of structural materials and applied loads. Thus, deterministic optimization without considering these uncertainties could lead to unreliable design. Recently, there has been much research in reliability-based design optimization (RBDO) taking into consideration both the reliability and optimization. RBDO involves the evaluation of probabilistic constraint that can be estimated using the RIA (Reliability Index Approach) and the PMA(Performance Measure Approach). It is generally known that PMA is more stable and efficient than RIA. Despite the significant advancement in PMA, RBDO still requires large computation time for large-scale applications. In this paper, A new reliability-based design optimization (RBDO) method is presented to achieve the more stable and efficient algorithm. The idea of the new method is to integrate a response surface method (RSM) with PMA. For the approximation of a limit state equation, the moving least squares (MLS) method is used. Through a mathematical example and ten-bar truss problem, the proposed method shows better convergence and efficiency than other approaches.

Literature Review of AI Hallucination Research Since the Advent of ChatGPT: Focusing on Papers from arXiv (챗GPT 등장 이후 인공지능 환각 연구의 문헌 검토: 아카이브(arXiv)의 논문을 중심으로)

  • Park, Dae-Min;Lee, Han-Jong
    • Informatization Policy
    • /
    • v.31 no.2
    • /
    • pp.3-38
    • /
    • 2024
  • Hallucination is a significant barrier to the utilization of large-scale language models or multimodal models. In this study, we collected 654 computer science papers with "hallucination" in the abstract from arXiv from December 2022 to January 2024 following the advent of Chat GPT and conducted frequency analysis, knowledge network analysis, and literature review to explore the latest trends in hallucination research. The results showed that research in the fields of "Computation and Language," "Artificial Intelligence," "Computer Vision and Pattern Recognition," and "Machine Learning" were active. We then analyzed the research trends in the four major fields by focusing on the main authors and dividing them into data, hallucination detection, and hallucination mitigation. The main research trends included hallucination mitigation through supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF), inference enhancement via "chain of thought" (CoT), and growing interest in hallucination mitigation within the domain of multimodal AI. This study provides insights into the latest developments in hallucination research through a technology-oriented literature review. This study is expected to help subsequent research in both engineering and humanities and social sciences fields by understanding the latest trends in hallucination research.