• 제목/요약/키워드: Scalar skew-symmetric matrix

검색결과 1건 처리시간 0.014초

RELIABILITY OF NUMERICAL SOLUTIONS OF THE G-EULER PROCESS

  • YU, DONG WON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제26권1호
    • /
    • pp.49-66
    • /
    • 2022
  • The G-Euler process has been proposed to overcome the difficulties of the calculation of the exponential function of the Jacobian. It is an explicit method that uses the exponential function of the scalar skew-symmetric matrix. We define the moving shapes of true solutions and the moving shapes of numerical solutions. It is discussed whether the moving shape of the numerical solution matches the moving shape of the true solution. The match rates of these two kinds of moving shapes are sequentially calculated by the G-Euler process without using the true solution. It is shown that the closer the minimum match rate is to 100%, the more closely the numerical solutions follow the true solutions to the end. The minimum match rate indicates the reliability of the numerical solution calculated by the G-Euler process. The graphs of the Lorenz system in Perko [1] are different from those drawn by the G-Euler process. By the way, there is no basis for claiming that the Perko's graphs are reliable.