• 제목/요약/키워드: Scalar method

검색결과 313건 처리시간 0.026초

비행시험을 통한 복합형 수직이착륙 무인항공기의 회랑 산출을 위한 통합시스템오차 분석 (Total System Error Analysis for Corridor derivation of Hybrid VTOL through Flight Test)

  • 김정민;엄송근;오정환;이동진;김도윤;한상혁
    • 한국항행학회논문지
    • /
    • 제26권6호
    • /
    • pp.448-455
    • /
    • 2022
  • 본 연구에서는 UTM(UAS Traffic Management) 체계 구축 시, 무인항공기 간의 비행 간격을 분리하기 위해 회랑(Corridor)을 설정하여야 하며, 통합시스템오차(TSE; Total System Error)를 고려하여 회랑 크기를 산출하였다. 복합형 수직이착륙 무인항공기를 이용하여 직선 구간과 선회 구간의 비행 데이터를 수집하였다. 비행 데이터는 SQSM(Scalar Quantity Summation Method) 방법을 통해 TSE를 도출하였으며, 항법시스템오차 (NSE; Navigation System Error) 와 비행기술오차 (FTE; Flight Technical Error)를 세부적으로 산출하여 직선 및 선회 구간에 대한 영향성을 분석하였다. 회랑 크기는 TSE 분석 결과와 PBN(Performance-based Navigation) manual을 참고하여 산출하였다.

음함수 곡면기법과 영역 분할법을 이용한 대형 폴리곤 모델의 홀 메움에 관한 연구 (A Study on Filling Holes of Large Polygon Model using Implicit Surface Scheme and Domain Decomposition Method)

  • 유동진
    • 한국정밀공학회지
    • /
    • 제23권1호
    • /
    • pp.174-184
    • /
    • 2006
  • In order to fill the holes with complex shapes in the large polygon model, a new approach which is based on the implicit surface interpolation method combined with domain decomposition method is presented. In the present study, a surface is constructed by creating smooth implicit surface from the incomplete polygon model through which the surface should pass. In the method an implicit surface is defined by a radial basis function, a continuous scalar-valued function over the domain $R^3$ The generated surface is the set of all points at which this scalar function takes on the value zero and is created by placing zero-valued constraints at the vertices of the polygon model. In this paper the well-known domain decomposition method is used in order to treat the large polygon model. The global domain of interest is divided into smaller domains where the problem can be solved locally. LU decomposition method is used to solve a set of small local problems and their local solutions are combined together using the weighting coefficients to obtain a global solution. In order to show the validity of the present study, various hole fillings are carried out fur the large and complex polygon model of arbitrary topology.

음함수 곡면기법을 이용한 폴리곤 모델의 홀메움에 관한 연구 (A Study on Filling Holes of the Polygon Model using Implicit Surface Scheme)

  • 유동진
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.107-114
    • /
    • 2005
  • A new approach which combines implicit surface scheme and point projection method is presented in order to fill the arbitrarily shaped holes in the polygon model. In the method a trimmed surface which has an outer boundary curve is generated by using the implicit surface scheme and normal projection of point onto the base surface. The base surface is constructed by creating smooth implicit surface from the incomplete polygon model through which the surface should pass. In this paper an implicit surface is defined by a radial basis function, a continuous scalar-valued function over the domain $R^3$. The base surface is the set of all points at which this scalar function takes on the value zero and is created by placing zero-valued constraints at the vertices of the polygon model. In order to show the validity of the present study, various hole fillings are carried out for the complex polygon model of arbitrary topology.

OPTIMAL ERROR ESTIMATE OF A DECOUPLED CONSERVATIVE LOCAL DISCONTINUOUS GALERKIN METHOD FOR THE KLEIN-GORDON-SCHRÖDINGER EQUATIONS

  • YANG, HE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제24권1호
    • /
    • pp.39-78
    • /
    • 2020
  • In this paper, we propose a decoupled local discontinuous Galerkin method for solving the Klein-Gordon-Schrödinger (KGS) equations. The KGS equations is a model of the Yukawa interaction of complex scalar nucleons and real scalar mesons. The advantage of our scheme is that the computation of the nucleon and meson field is fully decoupled, so that it is especially suitable for parallel computing. We present the conservation property of our fully discrete scheme, including the energy and Hamiltonian conservation, and establish the optimal error estimate.

Inducing the 4-Q Operation in the Elliptic Curve Cryptography Algorithms

  • Moon, San-Gook
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.931-934
    • /
    • 2005
  • The scalar point multiplication operations is one of the most time-consuming components in elliptic curve cryptosystems. In this paper, we suggest how to induce the point-quadruple (4Q) operation by improving the double-and-add method, which has been a prevailing computing method for calculating the result of a scalar point multiplication. Induced and drived numerical expressions were evaluated and verified by a real application using C programming language. The induced algorithm can be applied to a various kind of calculations in elliptic curve operations more efficiently and by a faster implementation.

  • PDF

미소 채널의 형상변화에 의한 혼합효율에 관한 수치 해석적 연구 (Numerical Analysis on Mixing Efficiency in a Micro-channel with Varied Geometry)

  • 윤준용;한규석;변성준
    • 공업화학
    • /
    • 제16권2호
    • /
    • pp.275-281
    • /
    • 2005
  • 본 연구에서는 격자 볼츠만 방법 중 Scalar Passive 코드를 사용하여 미소채널 내에서의 수동형 믹서의 혼합에 대하여 계산을 수행하였다. 미소채널 내에서의 수동형 믹서의 혼합에 대하여 유선과 압력분포를 통해 혼합과 압력 강하를 물리적으로 규명하였으며, 혼합에 영향을 주는 인자에 대해서 알아보았다. 수동형 믹서의 경우 고정물의 간격보다는 고정물의 개수와 고정물의 크기가 혼합효율과 압력강하에 큰 영향을 주었다.

V/f 스칼라 제어 영구자석 동기 전동기의 안정적 초기 구동 기법 (A Stable Startup Method of V/f Scalar Controlled Permanent Magnet Synchronous Motors)

  • 김현성;이상민;이기복
    • 전력전자학회논문지
    • /
    • 제25권5호
    • /
    • pp.395-403
    • /
    • 2020
  • This study presents a stable start-up strategy for v/f scalar-controlled permanent magnet synchronous motors (PMSMs). The v/f-controlled PMSMs easily lose synchronism under low-speed conditions if an insufficient stator voltage is applied to the machine due to errors in measured motor parameters and inverter nonlinearity, such as inverter dead time and on-state voltage drop. The proposed method adopts the I/f control method to ensure a stable start at low speeds and then switches to the v/f control method at medium speeds. A smooth transition method from I/f control to v/f control is proposed to minimize the oscillation of the stator current and rotor speed during transition. Moreover, the stability of the I/f and v/f control methods is analyzed using a small-signal model. Simulation and experimental results are provided to verify the performance of the proposed control strategy.

Memory-to-Memory방식 벡터컴퓨터에서의 외연적 유한요소법의 벡터화 (Vectorization of an Explicit Finite Element Method on Memory-to-Memory Type Vector Computer)

  • 이지호;이재석
    • 전산구조공학
    • /
    • 제4권1호
    • /
    • pp.95-108
    • /
    • 1991
  • 외연적 유한요소법은 벡터처리에 적합한 구조를 가지고 있어 벡터컴퓨터를 이용하면 기존의 스칼라 컴퓨터에서보다 휠씬 빠르게 해석을 수행할 수 있다. 본 논문에서는 memory-to-memory방식의 벡터컴퓨터에서의 외연적 유한요소법의 효율적인 벡터화 방법을 제시하였다. 먼저 벡터컴퓨터의 구조적 특성과 무관하게 적용될 수 있는 일반적인 벡터화 기법을 고찰한 후 memory-to-memory방식의 벡터컴퓨터에 적합한 벡터화 기법을 개발하였다. 개발된 벡터화 기법의 유용성을 확인하기 위해 외연적 유한요소 프로그램인 DYNA3D를 memory-to-memory방식의 벡터컴퓨터인 HDS AS/XL V50에 이식한 결과 스칼라에 비해 2.4배 이상의 성능 향상을 얻을 수 있었다.

  • PDF

Calculation of Magnetic Field for Cylindrical Stator Coils in Permanent Magnet Spherical Motor

  • Li, Hongfeng;Ma, Zigang;Han, Bing;Li, Bin;Li, Guidan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2158-2167
    • /
    • 2018
  • This paper analyzed the magnetic field produced by the cylindrical stator coils of permanent magnet spherical motor (PMSM). The elliptic equations about the vector magnetic potential were given. Given that the eddy current effects are neglected, the magnet field of the PMSM is regarded as irrotational field, which can be calculated by scalar magnetic potential. The current density of cylindrical stator coil was proposed based on the definition of current density. The expression of current density of stator coil was obtained according to the double Fourier series decomposition and spherical harmonic functions. Then the magnetic flux density for scalar magnetic potential was derived. Further, the influence of different parameters on radial flux density was also analyzed. Finally, the results by the analytical method in this paper were validated by finite element analysis (FEA).

난류 혼합층에서 확산화염에 대한 flame hole dynamics 모델 (Flame Hole Dynamics Model of a Diffusion Flame in Turbulent Mixing Layer)

  • 김준홍;정석호;안국영;김종수
    • 한국연소학회지
    • /
    • 제8권3호
    • /
    • pp.15-23
    • /
    • 2003
  • Partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics in order to develop a prediction model for turbulent flame lift off. The essence of flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of flame holes initially created by local quenching events. The numerical simulation for flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for constant-density fuel-air channel mixing layer to obtain the turbulent flow and mixing fields, from which a time series of two dimensional scalar dissipation rate array is extracted at a fixed virtual flame surface horizontally extending from the end of split plate to the downstream. Then, the Lagrangian simulation of the flame hole random walk mapping projected to the scalar dissipation rate array yields temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. The statistical results exhibit that the chance of partial quenching is strongly influenced by the crossover scalar dissipation rate while almost unaffected by the iteration number of the mapping that can be regarded as a flame-edge speed.

  • PDF