• Title/Summary/Keyword: Sb-doping

Search Result 123, Processing Time 0.017 seconds

A first-principles theoretical investigation of the structural, electronic and magnetic properties of cubic thorium carbonitrides ThCxN(1-x)

  • Siddique, Muhammad;Rahman, Amin Ur;Iqbal, Azmat;Azam, Sikander
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1373-1380
    • /
    • 2019
  • Besides promising implications as fertile nuclear materials, thorium carbonitrides are of great interest owing to their peculiar physical and chemical properties, such as high density, high melting point, good thermal conductivity. This paper reports first-principles simulation results on the structural, electronic and magnetic properties of cubic thorium carbonitrides $ThC_xN_{(1-x)}$ (X = 0.03125, 0.0625, 0.09375, 0.125, 0.15625) employing formalism of density-functional-theory. For the simulation of physical properties, we incorporated full-potential linearized augmented plane-wave (FPLAPW) method while the exchange-correlation potential terms in Kohn-Sham Equation (KSE) are treated within Generalized-Gradient-Approximation (GGA) in conjunction with Perdew-Bruke-Ernzerhof (PBE) correction. The structural parameters were calculated by fitting total energy into the Murnaghan's equation of state. The lattice constants, bulk moduli, total energy, electronic band structure and spin magnetic moments of the compounds show dependence on the C/N concentration ratio. The electronic and magnetic properties have revealed non-magnetic but metallic character of the compounds. The main contribution to density of states at the Fermi level stems from the comparable spectral intensity of Th (6d+5f) and (C+N) 2p states. In comparison with spin magnetic moments of ThSb and ThBi calculated earlier with LDA+U approach, we observed an enhancement in the spin magnetic moments after carbon-doping into ThN monopnictide.

Fabrication and characteristics of modified PZT System doped With $La_2O_3$ ($La_2O_3$가 첨가된 modified PZT계의 제조 및 특성)

  • 황학인;박준식;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.418-427
    • /
    • 1997
  • The effect of $La_2O_3$ as a dopant on the microstructure structure, crystal structure and electrical properties was studied. $0.05Pb(Sn_{0.5}Sb_{0.5})O_3+0.11PbTiO_3+0.84PbZroO_3+0.4Wt%MnO_2$ (=0.05PSS +0.11PT+0.84PZ+0.4wt%$MnO_2$) systems doped with 0, 0.1, 0.3, 0.5, 0.7, 1, 3, 5 mole% $La_2O_3$ were fabricated and investigated sintering density, crystal structure and micro-structure. The sintered 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system doped with $La_2O_3$showed sintering density of the range of 7.683 g/㎤ of 0 mole% doping to 7.815 g/㎤ of 0 mole% doping. The average grain sizes in the range of 0 to 5 mole% $La_2O_3$were decreased from 9.0 $\mu\textrm{m}$ to 1.3 $\mu\textrm{m}$. X-ray diffraction investigation of sintered bodies showed that solid solutions were formed between 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system and $La_2O_3$ in the range of 0 to 1 mole% but second phases were formed in case of 3, 5 mole%. Dielectric constants at 1 kHz were increased with 0 to 3 mlole% $La_2O_3$ before and after poling at the condition of 5 $KV_{DC}$/mm at $120^{\circ}C$ or $140^{\circ}C$ during 20 minutes. All Dielectric losses at 1 kHz were less than 1%, Curie temperatures were $208^{\circ}C$, $183^{\circ}C$, $152^{\circ}C$ and $127^{\circ}C$ at 0, 0.5, 1, 3 mole% $La_2O_3$ respectively. The values of $K_p$ were increased from 0 to 3 mole% $La_2O_3$ after poling at condition of 5 $KV_{DC}$mm at the condition of $120^{\circ}C$ or $140^{\circ}C$. The case of 0.7 mole% $La_2O_3$doped 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system showed $K_p$ of 14.5% by poling at $140^{\circ}C$ during 20 minutes.

  • PDF

Structural and Piezoelectric Properties of MnO2-Doped PZT-PSN Ceramics for Ultrasonic Vibrator (초음파 진동자용 MnO2가 Doping된 PZT-PSN 세라믹스의 구조 및 압전 특성)

  • Cha, Yoo-Jeong;Kim, Chang-Il;Kim, Kyoung-Jun;Jeong, Young-Hun;Lee, Young-Jin;Lee, Hai-Gun;Paik, Jong-Hoo
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.198-202
    • /
    • 2009
  • For use in ultrasonic actuators, we investigated the structural and piezoelectric properties of $(1\;-\;x)Pb(Zr_{0.515}Ti_{0.485})O_3$ - $xPb(Sb_{1/2}Nb_{1/2})O_3$ + 0.5 wt% $MnO_2$ [(1 - x)PZT - xPSN + $MnO_2$] ceramics with a variation of x (x = 0.02, 0.04, 0.06, 0.08). All the ceramics, which were sintered at $1250^{\circ}C$ for 2 h, showed a typical perovskite structure, implying that they were well synthesized. A homogeneous micro structure was also developed for the specimens, and their average grain size was slightly decreased to $1.3{\mu}m$ by increasing x to 0.8. Moreover, a second phase with a pyrochlore structure appeared when x was above 0.06, which resulted in the deterioration of their piezoelectric properties. However, the 0.96PZT-0.04PSN+$MnO_2$ ceramics, which corresponds with a morphotropic phase boundary (MPB) composition in the (1 - x)PZT - xPSN + $MnO_2$ system, exhibited good piezoelectric properties: a piezoelectric constant ($d_{33}$) of 325 pC/N, an electromechanical coupling factor ($k_p$) of 70.8%, and a mechanical quality factor ($Q_m$) of 1779. The specimens with a relatively high curie temperature ($T_c$) of $305^{\circ}C$ also showed a significantly high dielectric constant (${\varepsilon}_r$) value of 1109. Therefore, the 0.96PZT - 0.04PSN + $MnO_2$ ceramics are suitable for use in ultrasonic vibrators.